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ABSTRACT

This report summarizes the work accomplished since May 18, 1985, on Air Force

Office of Scientific Research Grant No. AFOSR 83-0166. Work has been in progress

in four different areas: (1) Optical interconnections; (2) Real-time defect enhancement

in periodic structures using four-wave mixing; (3) Computation using neural networks;

and (4) Optimal imaging concentrators. Various administrative matters pertinent to the

grant are also discussed.
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I. INTRODUCTION

This document contains a summary of the work accomplished under Grant

AFOSR 83-0166 during the time period 18 May 1985 through June 30, 1986.

Section H1 contains a summary of the work accomplished to date under the current

year of funding. This summary is supplemented by appendices.

Section 1111 is devoted to various admidnistrative matters pertinent to the grant.

HI. WORK ACCOMPLISHED

(a) Optical Interconnections

Optical interconnections has been an area of investigation under AFOSR support

for several years. The powerful interconnect abilities of optical beams have led many

to believe that one of the most important roles for optics in computing in the future

will be as an interconnect technology.

The focus of our efforts in this area has been on the use of holographic optical

elements for providing such interconnects. During the past contract year our accom-

plishments have been two-fold: (1) An analytic comparison of optical and electronic

interconnects in the problem of chip-to-chip communication (published in Applied

Optics, with a reprint attached as Appendix A to this report); '-nd (2) A very detailed

investigation of holographic optical elements and their capabilities in the role of inter-

connect elements (results presented at the 1985 Annual Meeting of the OSA, and in

more detail as an invited paper at the OSA Topical Meeting on Holography, April



-3-

1986). Since the results obtained in the first of these two areas are found in the

appendix, we discuss in more detail only the second area above.

Of particular interest in the interconnect problem is the diffraction efficiency that

can be achieved with a holographic optical interconnect element, as well as the ability

of that element to efficiently concentrate light onto a small-area photodetector. We

have developed a ray-trace program that accounts not only for the density of rays in

the image space (as do most conventional ray-trace programs) but also the diffraction

efficiency associated with each of the rays, thus enabling us to obtain image irradiance

profiles at the detector plane. The predictions of this program have been extensively

ye. :fied experimentally using bleached silver halide emulsions. The approach is

sufficiently general that the effects of fan-out on diffraction efficiency can be included,

an important issue in interconnect problems. The holograms studied are generally

reflection elements with focusing power. The diffraction efficiency associated with

each ray is determined from coupled mode theory, using another program developed

expressly for that purpose.

One Ph.D. student will be completing his degree this July in this area. A major

publication on this material has been submitted recently to Applied Optics.

During the year we have also been devoting attention to more fundamental

aspects of optical interconnections, especially the issues of fan-in and fan-out. A paper

has been published by Optica Acta on this subject and is attached as Appendix B. In

addition, an extensive survey paper on optical interconnections has been under prepara-

tion and will soon be submitted. However, much remains to be done of a fundamental

nature in understanding the proper place for optical interconnects in a hierarchy of
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interconnect technologies.

(b) Defect Enhancement using Four-Wave Mixing.

During the past contract year we have fully developed and brought to a conclu-

sion our ideas on the use of four-wave mixing or phase conjugation as a means for

enhancing defects in periodic structures. Such defect enhancement is needed in the

testing of integrated circuit photomasks, as well as in other inspection problems

involving periodic structures.

Our early work was devoted to the problem of intensity inversion using an

inherent nonlinear property of the phase-conjugation process in photorefractives. This

work was published in Applied Optics (Vol. 24, pp.1826-1832, 1985). Following this

work, we applied the method to defect detection in periodic structures, with the results

being published in Optics Letters (see Appendix C for a reprint).

A Ph.D. candidate finished her work on this topic in the Summer of 1985 and is

now employed in industry. A patent application has been filed on the method. No

further work in this area is planned, since it is ready for commercialization.

(c) Optimal Imaging Concentrators

During the past three years we have used a small part of our AFOSR funds to

support supervision time of a U.S. Air Force Captain at Stanford in a Ph.D. program.

This individual has now completed his Ph.D. thesis in the area of optimal imaging

concentrators, i.e. imaging system configurations that will maximally deliver light (of

an arbitrary state of partial coherence) to a prescribed detector array of arbitrary
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geometrical configuration. The research is highly theoretical in nature, but has direct

applications to both optical interconnections and to high-energy lasers. The early

results of the work were reported at the 1985 Annual Meeting of the Optical Society

of America. At about the same time a full-length technical paper was submitted to

JOSA-A for the special issue on Coherence and Statistical Optics. We expect this paper

to be published within the next month or two. The Ph.D. student working in this area

will be completing his final requirements this summer.

(d) Neural Networks and Optical Computing

During the past contract year we have undertaken research in a new area that we

feel is very exciting and promising, namely the application of neural network ideas to

problems of optical computing. There is a multitude of researchers who are currently

looking at such networks as a possible means for realizing associative or content-

addressable memories. In view of the substantial efforts in this area elsewhere, we

have chosen instead to focus on the application of such ideas to computing.

For six months during 1985 we were fortunate to have as a visitor with our group

Prof. Mitsuo Takeda from the University of Electro-communications, in Tokyo. Under

our encouragement, Dr. Takeda began an investigation in this area in collaboration

with us, and results that we feel are very significant were obtained. To summarize in a

few words, we investigated the application of the Hopfield neural network model to

the following computational problems:

1. The "Hitchcock" problem, which is a transportation problem or a resource alloca-

tion problem.
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2. Matrix inversion and image deblurring problems.

3. Signal processing problems, including spectral analysis.

The results of these investigations revealed some interesting points that require

further investigation:

1. For most (but not all) problems, the most direct solution was one that mixed the

"program and the 'data" in a single interconnect pattern.

P2. For many (but not all) problems, the computational load associated with determi-

nation of the required interconnect pattern is comparable with the computational

load associated with direct solution of the problem.

3. For most problems, constraints must be properly weighted with respect to the

energy function to be minimized, requiring rather ad hoc and empirical choices.

In view of the importance we place on this work, both with respect to work

accomplished and work proposed, we are attaching a preprint of the paper to this

report as Appendix D (in spite of its bulk). This work has been accepted for publica-

tion in the Applied Optics special issue on number representations in optical comput-

ing.

111. ADMINISTRATIVE MATTERS

This section contains miscellaneous information pertinent to the grant.

Publications on work fully or partially supported by this grant and accepted or

published during the last contract year are as follows:
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(1) E. Ochoa, L. Hessehnk, J. W. Goodman, "Real-time intensity inversion using

two-wave and four-wave mixing in photorefractive Bil2GeO2O", APPLIED

OPTICS, Vol. 24, pp.182 6-1832 (1985).

(2) R.K. Kostuk, J.W. Goodman, L. Hesselink, "Optical imaging applied to

microelectronic chip-to-chip interconnections", APPLIED OPTICS, Vol. 24, No.

17, pp 2851-2858 (1985).

(3) E. Ochoa, J.W. Goodman, L. Hesselink, "Real-time enhancement of defects in a

periodic mask using photorefractive B12SiOI2", OPTICS LETTERS, Vol.10, pp.

430-432 (1985).

(4) J.W. Goodman, "Fan-in and Fan-out with optical interconnections", OPTICA

ACTA, Vol. 32, No. 12, 1489-1496 (1985).

(5) J.W. Goodman, R.K. Kostuk, and B. Clymer, "Optical interconnects: an over-

view", Proceedings of the IEEE Conference on Multilevel Interconnects for VLSI,

Santa Clara, California, June 1985, pp. 219-224.

(6) J.W. Goodman, "A random walk through the field of speckle", Optical Engineer-

ing, May 1986.

Papers under submission include:

(1) P. Idell and J.W. Goodman, "Design of optimal imaging concentrators for par-

tially coherent sources:absolute encircled energy criterion", Accepted for publica-

tion in JOSA-A.

(2) M. Takeda and J.W. Goodman, "Neural networks and computing: number

representations and programming complexity", Accepted for publication in

APPLIED OPTICS.

Am& wo l . .. h _
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Thiee contributed papers were presented at the 1985 Annual meeting of the OSA.

An invited paper was presented at the Workshop on Optical Interconnects sponsored

by MCC in Austin Texas in November 1985. An plenary paper was presented at

LASER 85 in Los Vegas, Nevada in December 1985. An invited paper entitled

"Holographic optical elements for optical interconnects" was presented at the OSA

Topical Meeting on Holography, Honolulu, Hawaii, April 1986. An invited paper enti-

tled "Optical interconnects" was presented at the NoF Workshop on Lightwave Tech-

nology, Tucson, AZ, May 1986. An invited paper entitled "Optical interconnections

and computing" was presented at the US-Japan Workshop on Optoelectronics, Tokyo,

Japan, May 1986.
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Optical imaging applied to microelectronic chip-to-chip

interconnections

Raymond K. Kostuk, Joseph W. Goodman, and Lambertus Hesselink

An imaging system is proposed as an alternative to metallized connections hetween integrated circuits.
Power requirements for metallized interconnects and electroolitic links are c(onpared. A holographic opti-
cal element is considered as the imaging device. Several experimental systems have been constructed which
have visible LEI), as the transmitters and PIN photodides as the receivers. Signals are evaluated at differ-
ent source-detector separations. Multiple exposure holograms are used as a means of optical fan out allow-
ing one source to simultaneously address several receiver locations. Limitations of this technique are also
discussed.

I. Introduction One connects two or more devices on a common chip,
A limitation of increasing importance in VLSI elec- and another connects an integrated system or chip to

t rmnic integrated circuit design is the interconnections another chip.
between devices and systems. Restrictions of con- There are a number of ways to compare the perfor-
ventional interconnects arise from (a) increased space mance and capability of different types of intercon-
allocated to wiring, (b) propagation delays with in- nection.' ,; Consider one such criterion, the reactive
treased line lengths and RC time constants, (e) induc- power required of one electronic inverter to trigger an-
tive noise ietween lines, (d) dominance of line capaci- other inverter. Reactive power is given by
tance over other sources of capacitance as line lengths (X,
increase, and (e) degrading electromigration effects on 2T (1)
wiring materials.1 1 Since different optical signals can where C is the capacitance ofthe line and attached de-
propagate through the same spatial volume withoutIg optical methods vices, V is the device threshold level (assumed 1 V), and
interterence, the possibility of using pia ehd to -ithclkn pro(asmd1se)alleviate this space restriction is attractive.41-1 In this r is the clocking period (assumed 1 nsec).
paper we discuss a number of aspects of optical imaging Figure 2 illustrates gate-to-gate connection. The

which are applicable to the electronic interconnect gate capacitance of two devices and the metal line
connecting them .ust be charged to the threshold po-tential for the gate. The gate capacitance is given by

II. Comparison of Optical and Electronic (,("A
Interconnections C' , LI

Figure 1 shows a typical VLSI microelectronic circuit where = :3.9 for SiO.,, (, = 8.854 X 10- 4 F/cm, A is the
mounted and bonded to a package which can be con- device area, and d is the oxide thickness layer. Pro-
nected to other electronic systems. There are several jected VLSI device lengths and oxide layer thickness are
thousand gates on this circuit and several hundred 0.5 and 0.02 pm, respectively. This gives a gate ca-
output pins which allow communication to other sys- pacitance oftC, = 50 fF/device. The capacitance of the
tens. Two levels of interconnection can be identified: line joining two devices is

( tir, -1.

where I is the line length and u, the linewidth. The
width/height ratio is restricted by fringing field effects

Thie nithrs are with Stanford V niversitv. Electrical Engineering to a minimum value of -2. For a typical VLSI circuit

Slirt mint. Stanfo,,rd.('alilornia 943015. the average length is -1 mm long. This gives a line
Received 26 February 1985. capacitance of (' = 70 IF. The total capacitance of this
tNx3-6935/85/172851-08$02.1t)/0. link is then C, = 2C5, + C', = 170 IF, and the corre-
c 1985 Optical Society of America. sponding reactive )ower 1), = 8 pW.

1 September 1985 / Vol. 24, No. 17 / APPLIED OPTICS 2851

. . . .. . ... I L I



4 Fig. 31. Sdbivinat it chf p t1j o-chi 111connect 'il. rrm erlier- Imi
wit h inrreain I ;111ine to mIIIn I III/e -ig ,i 1, .i r v - <

surnwdshirt e irugtr a' it tobtelfiivii e d hi b trjirii-- :I

['i,, I . VI .SI ciriult Irnanutdct rl ired liv tiorevell) with -(4)(hi gates
and I1 1)r pidin ;d . It( rtrin Ic tins exist botween gates (if a

qlii tiiiin o,iht raite and~ troni bornding pad, to other circuits and rut-
side systelr

-, Fig. 4. D~etector circuit inidel. The space-charge regio 1i 'i i
junctioin results in a capacitance shunting a pihotonr Init-it kriO ri-

T SOUrce. T'he series resist ance is t.\p ical lv a tvwob is anrd ca ii I, ri
giected. The parallel resistance is ut the( or7der ot ti" P aind vim is

Fig. 2. Scherixaict r'atv c--gate connect ion tir two) irierters. The assiued tor he an open circuit.
ine between gates is rroideled as a single capac itor.

Figure 31 shows a chip1)-t o-chi p cornnect iont. To mini- where i1, is the photocurrent, i1i is the optical fluxi. (I i..
iie priopagation dlelays, gate capacitances are graduI- the electronic charge, r is the Fresnel reflect ion cro-Ii -

ally increased in size until the device capacitance is cient of the detector surface, hut is photon ene(rgy,* .,Ii
cormparable to that of a bonding pad., A voltage pulse the seMiCOndUCWTo ab)sorption cioefficient at N. and i
fromn a logic element must have sufficient power to the absorption width. Typical resptmnsivitv tfir a iic t
charge these gates, two bonding pads, the line conl- device is 0.4 A/W.
necting them, and a receiving gate to the device The usual condition of low series and large shunit re-
threshold level. The total capacitance of this link is C, sistance simplifies the model to a capacitance shunting"
=2C,, + C, + 2 C'g, where Cts is the bonding pad capac- a current soturce. Current from the detector mnust

itance. For a pad area of -100 pin" and assuming a charge the gate to its threshold level in a time less thani
SiOr, dielectric, this capacitance is -0.4 pF. Lines the clocking peritod T. If nto preamplifier is assumted.
connecting the pads are 25 pmn in width and are assumed all current must originate from electrons generated trom
to be 5t00t m ab~ove thle ground p~lane. When a number the incident optical flux TI. F'or a 2-pin thick, 25-pn
of chips are connected on the same substrate, a typical square active area detector, the junction capacitance is
length sepiarat in', a nearby pair is of the order of' I cm. Cd = 832.5 II'. Since the detector must charge the ca-
At this distance transmission line standing wave effects pacitance of a gate, the total capacitance is C, = Cj +
are not significant (i.e.. X\ = 30 cm). C, 82.5 fF. For a threshold voltage of -I V,

The line capacitance in this case is ornl' 4-.5 [F. TheV W
ot al cap~aci tance becomes Ct = 0.8 pF + 0.0045 pF + (/t,

t0.1 pF = 0.9 t) and the switchintg pow~er P, = 4:30 f1 ~ - r
P W.

NextI cionsider a simple elect rootltic link consisting r I Isc
of a semicoinductor souirce and detector. Initially it is Wt 0,~fnietotclpwr op furnossni t- that all the light fromn the source is ficusedl on ith20 'ofncdtotcaptwr8(pAfcrrtcan be generated in the detector and can p~roduce SoI ('thle det ecti or. The detect or circuit mordel is Shown in fIcag.ri , ufcett rdc ieI-Fic,. I. The current generated is a fuinct ion of I he ocarge '[h sissuffiint to lasriode theca t-oph,,'a armtrso' hjncinan il lumn- threshold valie As 1,igalae id letrclti

Iritsitl paameersof te jnctinn nd he llnmna- ioptical ((inversion etlicieticv of' 30t'', the elect roirpt ikt itt ., link will require '-67 t) pW of :electrical power. (A large
_____I -r)i tract ion otihe pow~er needed tno drive a d iode is nott re-
hii act i ye. The inm1inort ant coi oe rat io in here is t he amointn l

'852 APPLIED OPTICS / Vot 24. No 17 /tSeptember 1985



of power required to transmit comparable optical and Output Jzd1a~ Pad - RecthIng raot

electrical signals. In the electrical case with FET type __- _ i itwa.

devices, the power is primarily reactive in nature, while - L 4d
the optical system also requires a real power component. I C#. j&- Sub..r..

The consequence of this difference is not significant at
this level of analysis. It would need consideration if Fig. ., (eimetrical layout if a clip- ,i ch il etii. 1',
heat dissipation effects were investigated.) legrated circuits are rmunted on a iommiii subhstrate h/. = I 

These first-order considerations indicate that, with cin. = I cm. and bonding pad widths and ea ratin, = I l n.

currently available electrooptic technology, the power
required for an electrooptic link is of the same order ofHE
magnitude as that necessary for the electrical chip- -o- -

to-chip interconnection and would not suffer from the.
problems previouslv outlined for conventional inter- " :i"o. "
connections. The electrooptic link compares less fa- ,

vorablv with gate-to-gate connections on the same Si.b.roti "
chip. paro dS -

d PD

Ill. Optical Chip-to-Chip Layout -ig. 6. Imaging system br chip-to-c ouiatp o( nii iicat I, i,.-ht

The chip-to-chip interconnect problem can be for- emitting sources and detectors replace trasinitiiing and

miulated in more specific terms as shown in Fig. 5. One blinding pads. A hologram is used as the imaging element. l)eigti

or more integrated systems are mounted on a common ius.1t include f/No. or I/1) ratio. intensity einsiuion proi le I, the

substrate separated by distances of -1 cm. As men- source, and source-detector separation.

tioned previously, at these lengths and frequencies of
1 GHz. transmission line effects are not significant. produce a reduced coupling constant and diffraction
Bonding pads are assumed to be 100-pm square and efficiency which results in lower image intensity.
separated by 100 pm. Several hundred bonding pads A LEI) is also a potential semiconductor source. It
must be connected. Each transmission point should has the advantage of being a surface emitter and is much
be able to address several receiver locations; it is also easier to fabricate than a laser diode. In addition they
desirable for channels to cross without interference, can be made to emit in the visible by introducing traps

An imaging system can provide this connection in the band gap. However, they' are inefficient in
mechanism. Consider the arrangement of Fig. 6. A comparison to laser diodes and have spectral band-
semiconductor emitter illuminates a holographic optical widths of -20 rm. Also they emit unpolarized light
element coded to distribute radiation to one or more which results in lower diffraction efficiency for the
image points. Photodiodes convert optical to electrical reason mentioned above. Their intensity emission
signals, which are then decoded by a digital electronic profile is cosinusoidal in angle and therefore illuminates

circuit. a larger region of a hologram than would a laser diode.
Advantages of using holographic elements include Image reconstructions with this type of emission profile

their adaptability to decentered layouts by using off- are brighter when the hologram occupies large solid
axis recording geometries and to fan out by using se- angles relative to the source.
quentially exposed multiple holograms.

A number of factors must be considered in a practical IV. Holographic Optical Element Characteristics
system of this type. The most attractive sources and The requirement for a compact system implies that
detectors are those made from materials which are the element must have a small f/No. This also in-
compatible with integrated electronics. Semiconductor proves flux collection. The meridional angles for f/1I
sources developed for optical communications have and f/3.5 elements are 26.50 and 8.10 in air. A model
emission wavelengths from 780 nm to 1.6 pm. To date for diffraction efficiency must be valid for grating vec-
only a few holographic recording materials are respon- tors covering this angular range. A relatively simplesive at these wavelengths and these are not very sensi- description of grafting diffraction efficiency is Kogel-

tiveY nik's coupled two-wave treatment."' The expression
Other considerations are the emission profile and of efficiency for reflection holograms with absorption

polarization characteristics of the source. Laser diodes is given by
have an emission profile corresponding to the diffrac-
tion pattern of the junction geometry. Planar stripe 7= /v + I cotho 2 + .i. 2
junction diodes have transverse mode divergence angles '(
which have typical values of 600 by 100. Therefore only where Yj is the diffraction efficiency,
a portion of the volume above the source will be illu- d
minated. The hologram need only occupy this region t, =J ., 7M I

above the source to be effective.
The polarizations of these two directions are or- - 1/2 ),di- ',. I,

thogonal. Kogelnikt has shown that polarization n= d
vectors oriented in the plane of incidence of the grating cos01

1 September 1985 / Vol. z4, 'Io. 17 APPLIED OPTICS 2853
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n I is the refractive-index modulation, d is the grating - -

thickness, c., and c, are obliquity factors, o: is the ah-
sorption/length, and 00 is the Bragg angle. The planar 04-

grating treatment can be extended to curved surfaces
by assuming that the surface is locally plane in the re-
gion where the ray intersects the grating." 03

A number of planar volume phase holograms were
foirmed in bleached photographic film. The thickness.

q0 2refractive index, and postbleached absorption were
measured to obtain average values for these parameters.
The results were then used in Kogelnik's model to 00
predict the diffraction efficiency curves and were
compared with measured curves. Although slight
changes to the values for absorption and emulsion 0 2 0 20 40 60"""

thickness change had to be used, the agreement was very ANGLE FPCM PETPCOPECrCTED BEAM (,aesI
good. Figure 7 shows two measured diffraction effi- Fig. 7. Measured diffraction efficient'y curves f,,r gratins with K
ciency curves from gratings with K orientations ap- approxiina!in4 those hfrmed bv the meridional ray' in Io .n I I

proximately equal to the meridional angles of /1 and system. i.e.. 250. and ixI an f':.5 system. i.e., l0 . 
Sinificant lii-

[/3.5 systems. High diffraction efficiency is maintained ciency exists over an angular range of 30 60' .

over a large range of playback angles. The holographic
optical element (HOE) field of view is essentially this
angular range and is -30* for 25' grating slant angles
and 60° for 100 slant angles corresponding to the [/3.5
system.

A single grating element can interconnect a number
of sources and their conjugate receiver locations over the
angular range of high efficiency. When source recon-
struction coordinates differ significantly from formation
positions, hologram image aberrations reduce image
irradiance. Aberrations can be evaluated with ray f//i

tracing techniques. For thick holograms these ex-
pressions may be derived from the reflected ray com- -

ponents which are perpendicular and tangent to the -.5..

grating vector: r = (K.r)K - K X (K X r), where r is
a unit vector along the reconstruction ray, and K is the
grating vector given by K = r,, - r, and r, and r, are
unit vectors along the object and reference ray direc-
tioins, respectively. The reconstructed or image ray is 5.

r'=-(K.r)K-KX(KXr). i . . .
The spot diagram generated by ray tracing should be Fig. 8. Spot diagrams for f/I. and//. systems with a reconstruct ion

adjusted for the variation in efficiency at different lo- source point 0.5 cm from the axis of the element at x = 0, =

cations in the aperture of the volume HOE. However ('omputatins are based on the grating vector equation.

it has been shown that a close relationship exists be-
tween the 'observed image field and the density of rays
traced through the element.Y2 Figure 8 shows the spot The effective HOE aperture and reflection losses also
diagram of rays from a source point displaced 0.5 cm restrict the usable source power. The solid angle sub-
perpendicular to the axis and 0.1 cm along the axis from tended by the HOE relative to a source point is
the source formation positions for f/1 and [/3.5 ele-
ments. It is clear that off-axis imaging degrades much Q = (r 1) s
more rapidly for smaller f/No. HOEs. r

A computer program coding the grating equation can where D is the diameter of the hologram aperture. () is
he used to generate a spot diagram at any desired image the angle from the source point to the center of the ho-
plane. When used in conjunction with Kogelnik's ef- logram, and r is the distance from the source point to the
ficiency model, both the aberrations and the efficiency hologram center.
of the rays forming the image can be determined. This If' the source is a Lambertian emitter, the flux col-
,gives a better indication of the distribution of flux at the lected by the aperture of the HOE is i = (I cosO-)M2.
receiver location and the detector current produced When the source and ol)tical element are on-axis, 12.5"
tromt a source <ifgiven size, output power, and location of the available source power is collected with an //
relative to the HOE. Such a program is currently under system anu only l 1.') for an //3.5 system.
development in our lab for use with multiple image re- If the hologram recording medium is not index
flection hologram design. matched to the source and detector surfaces, Fresnel
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Fig. 10. Combined multifacet hologram and variable image mask.
A separate hologram facet is formed with each fan-out pattern en-t h. ragin" i re c, )Icoded on the mask. The mask and hologram are translated with re-

1+,ult Irtln a lwiit source is inmaged to a diametrically loppo)site point. spect to each other. Each hologram is formed with a converging
,. Xra .elenn al exposures can be encoded and used to produce an reference wave to allow playback with an expanding beam.

Ilnsa ri nlt pattern of images. Ihis can be used for invariant fan -out
con figu rations.

CO 'AOLL EO
SOulCE

reflection losses also reduce the flux entering the grat- S, P05-0N EPOSED

gin. The recording medium used has a refractive index . .CET

ot 1.64. resulting in transmitted intensities ranging from c- , '- Q-
91 to 93' for incident angles of 0-30'. Therefore 7-9% _
offthe available source power is lost by reflection. Ifa - -E
fixed amount of flux (I)dt is required at the detector,
axially located sources must have output powers Fidt
exceeding this value by (IXt = lwbd,, with p = 1/(0.125
* 0t.t)8) = 9 for an f/1 system, and p = 1/(0.01 * 0.08) =

109 fur an f/3.5 system. Therefore considerable power
is required from a Lambertian source even when a 100% /
efficient hologram is used. TR.NoLo AXE.

TRANSL ATION AE5

The divergence angle from a laser diode is approxi- Fig. II. Multifacet hologram formed with selective object source
nmtely matched to the meridional angle of an f/l ele- points. Source points are encoded in sequential fashion. This is the
inent (-30" for the laser and 260 for the optical element, most flexible configuration but also the most difficult to implement.
This implies that all the poxwer from a laser diode can
be collected by a smaller aperture than for a Lambertian
soiurce. A laser diode can therefore have much lower (i.e., mask making) used for generating an address
input power and still produce the required detector pattern. The drawbacks of this arrangement are the
current and perform the switching task. intermodulation terms which limit the efficiency of the

After considering the above HOE and semiconductor reconstruction images.14 It is not obvious where this
source characteristics, three types of hologram config- becomes restrictive for this application. In the last
uration appear to offer a solution. The first arrange- hologram configuration proposed each facet is illumi-
ment is a large aperture reflecting lens with one or nated sequentially with a number of diverging object
multil)le gratings (Fig. 9). This element is relatively beams and a converging reference wave (Fig. 11). The
easy to fabricate and position and uses a point source positions of the object beams can be moved automati-
for reconstruction. Multiple grating formation allows cally with a computer-controlled stepper motor drive
a single reconstruction sturce to address several loca- and beam ratios can be adjusted for maximum diffrac-
tiins simultaneously. It does however restrict the I)- tion efficiency. This configuration appears to offer the
cations ti' sources and detectors to positions along di- most flexible arrangement for fabricating an intercon-
ameters which pass through the optical axis, and fan out nect pattern since it satisfies requirements for both a
can only le accomplished in an invariant pattern. This large number of independent channels and spatially
restriction may preclude this arrangement from prac- variant fan out. The difficulty with this HOE fabri-
tical application but it is important for optical system cation technique is the mechanical complexity of the
evaluation. The second and third configurations utilize mount; however there appears to be o0 fundamental
the moltit'acet or aperture partitioning coincelpt recently restriction to its implementation.
discussed by Haugen et al. 1:1 for transmission holograms
and reluires directed beam rectnstruction either from V. Experimental Results
i, laser diode or a directed LE) emission l)attern. In To evaltate some of the above ideas a numnber oflex-
ine tf these arrangements a mask with the address perimentai systems were fabricated and tested. Only
piattern serves as the object wave and a converging beam the first hologram design described above is discussed
a the reference wave (Fig. 10). This method has the here. The other two holtogram types will ibe presented
allt rai ive aslpect if having an Rt' ctlat ible techniqlue in future palpers.
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Table I: Source and Detector Characteristics

Ulehtt -Packard
Sources Litronix (fII')

Input power 155 mW 140 inW
Output power 70,uW/str 80 p /st r

Intensity profile Lanihertian I.ainlbertian
Size 250pin2  

15()'pni
l2

660 nm 635 11m
20 rnm 20 nin

Detectors HP EO Coupler P[D HI'420)5 PIN

Size 400 prn 200 pl (diameteri
Responsivity (630 nm) 0.1 A/W 0.4 AW1 Fig. 12. laitrotix I.I) with 250-urm- eml~sin trea onl . v i,,

P'at'k.rd phottlitle from an elet troot tt cttipler %kilh it1) titfl -it ti(

a~rt-a. The sepattionl ofJ t}le twAo t'f'i),, i , xilil ti.

The effects of image degradation and power loss were

determined by mounting a number of sources and de-
tectors at increasing separations and measuring the
received detector photocurrent. The operating char- ' -
acteristics of the sources and detectors are given in
Table 1. The sources are surface emitting GaP LEl)s.
The primary reason for using these devices is their peak
emission in the visible (635 and 655 nim) making them
compatible with a number of available holographic re- '..

cording materials. They have about a 20-nni spectral
bandwidth and a near Lambertian intensity emission
profile. Their main disadvantage is their poor electrical
it) optical conversion efficiency. Measured efficiencv

of both the 635- and 655-nm LEI)s is -0.51'('. Sources
and detectors used were in chip form with cross-sec-
tional dimensions of the same order of magnitude as the
size of the bonding pads (see Fig. 12).
Two source-detector mounts were used. On the first.

te devices were set on the common condu cting plan(, Fig. 11. I'rt of tI rat w it plitodiode current wit iimage It,clst-(]

of a dual in-line IC package. This arrangement alohwed on iht delect or Io flit- current with the i nag, fix used ,fl the dvict,r.

evalut ion of both electrical coupling and direct optical Thi equipfnll used did not allow itnasurvtitnls with soret de-

st-attering on the detector signal received from the teltr s-paratiins frIl .4t I Imn; I i at-s measuretents iii

source image. The second nount had source and de- taicd with stinrts ard detel irs it thc same sist rate: 0) tilt

tector on different substrates and was optically isolated separae substrates.
to allow examination of the effects of image degradation
and aperturing at large source-detector separations.

Figure 1:3 is a plot of the ratio tif photodiode current
with the image of the source focused onto the detector
to the current with the image focused just off the de-
tector. Response with source-detector separations
from 86 pmn to 4 mm was obtained with the source and
(letector mounted on the same conducting substrate. It
app~ears that optical scattering and electrical coupling ll l l i

greatly reduce the effective signal response at separa- (b)
tions <100 mm. At separations from 2 to 4 mm, con-
trast ratios increase more slowly than at closer separa-
tions. With source and detectors on separate substrates
atid isolation from optical scatter, the contrast ratio
improves by an order of magnitude at 1.0-cm distances,
t hen 'ills by a factor of 2 as separation increases to 2 cm.
The talhloff at larger separations result,; from aberrations
which reduce image irradiance.

The image of the source was also observed on a CCD in (dl

line scanner to directly evaluate the image irradiance Figt. CCI) linescan traces tilimages ofthe 6:-nm ilEl1)itilwetd
pattern. Figure 14 shows these profiles when the wilithe f/I.9 HOE. The ('() has 250;. 13-pin ehetirtis. )-,ill,-

635-nm LE) is 0.45, 0.60, 1.00, and 1.50 cm from the scope scale is 3l10 pin per I cm. Source -CU) separat itisare (al l .

linear sc-anner. The hologram used for these inea- cm; (h) 0.60 m; tc) 1.0)cin: a nd) ll (d).). cii.
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F i.I (a chenat icoitholngrani const rtCtictn arrangieetit tti foirm
a1 linlt I i image with a single recoinst ruction smiurce. 'he 'i Imo plante
is t ranslated thirniih fixed const rutfion beams. (b lit he resulting
elt-liiitit is iltct a set uf reflecting lenses with displaced optical axes
which iniage the sokrce re lat ive tottheir respective axes. 11wll lenses

in (I) I are sho~wn untfoldled for clarit.

-fire men ts has a (jiain eter of 1.5c (in and is 3. 1(1r Cf rom
the si urce-det ector plane. Tlhe (CI) ;~calls indicate
hat the falloff in effective signal response at large

separations results fromt anl increase in the image area
and at ctrresp~onding decrease in imnage irradiance illu- (b)
oninat ing the detector. Fig. 16. (a) Photograph iif multiple images formed with an element

A ntumbier of mlultiple exp~osuire hologframs were madie having 0.25-cm horizontal and 0.70-cm x-ert ical displactements using

to examinoe the potential of'ofptical fanl out. Elements a J,Et) reconstruiction snutrce. TIhe dioide is I cmn from the c-enter of

were made -withI the arrangement shown in Fig. 15. the image p~atterni. (lit Phiotograph of a (CC) line trace ut the L.ED

('onvergitng and diverging wave fronts overlap to form imaged by \a HOE wviththiree 5(tt-m translatiouns. Scale is 3(1 min

anl on -axis reflecting lens tvype hologram. Tlhe film per I cm.

plane is then translated in) this overlap region to form
at ntumlier of holographic lenses with their optical axes
(displaced by the amount of translation. A single re- It could also reduce electrical coupling difficulties of
('(nstruct ion source has a different displacement trom comnvent ional interconnect schemes. The chip-to-chip

hie optical axis of each encoded element and therefore interconnect canl lhe recast in terms of'anl optical imlaginlg
imiages the source at a different position in space. system with semiconductor sources as signal transmnit-
Figures 16(a) and (b) show images produced from two ters and photodiode detectors as receivers.
such elements,. In the first, film translations of 0.7 by The diffIractioin efficiency characteristics of'reflection
0.2- (ft were used,. while in the second (.5-mm move- volume htdtgrams have sufficient angular response to
nteilts were made. Bot h situat ions give well-resolved accommodate source-detector separations tof' a few
irtiages with fuImll width at hall-intensitv maxima dent imeters . Tlhese separations also require that thle
FWH ~l) of -:300) pro. The JEI emission suirface is holographic element be located a coinpa ralle distance

150 m m ini lengt h. above the circuit substrate. Other practical consider-
ationms are Fresnel reflect ion losses and flux collecttion

VI. Conclusions and Future Research c'haracteristics of a particular f/Nti. element and source
Reactiye powI~er conilsideraitiolns indicate that with emission prtofile. Serious limitations alsto exist in thle

(-tirreift eleetroo)ptic tetchntologv anl oiptical chip-to-chip) lack tif'ctinpatifiility between efficient semficotnduttottr
itIerconnt iet requtires iiiIf rt xiit t e v tihe saime a itt til it sout rces and] hotlo grafpthidc rectord ing matecrials. A mnat ('1
tif I~i)%%(r to) t ranitit high speoed signals as electrical between t hese cotmfponients wtould allow use tof much

Iinleti ons illi witboot the need to detvtote large sec- motre efficienit sources and greatly improved fltix ('il-
i imlts of itt'- tirtlit siibst rate 1I) tonittlinicatiton ('haii- feet iton getltnet ries.

f 'IThi','A (tlt a ll i e., thbe iste if mot re ilit il ottput In itialI ex periment s ind icat e thbat electrical aind oti cal
1fiti n itil itrevse tIhe ittiirtat imi t-aia-it\- (Ifth le W(. couipliitg are seriotis jiroillems; wheit stircs itd deC-
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Fan-in and fan-out with optical interconnections
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Abstract. Optical beams are known to have many desirable properties \when
used for providing interconnections, Such interconnections would be used in an
all-optical computer based on optical gates, but can be used at various levels of
architecture in electronic computing systems. The fan-out of optical interconncc-
tions from one computing element to N computing elements is accompanied by
an N-fold loss of light po\er for each connection. Less obvious is the fact that
fan-in of connections from .V computing elements to a single computing element
can in some cases also be accompanied by an N-fold loss of power.

1. Introduction
Much attention is no\v being given to the possible use of optics as a means for

providing interconnections in computing structures of various kinds at various levels
of architecture [1 3]. The main attraction of optics in this regard is the freedom from
interference between adjacent channels of interconnections, arising fundamentally
from the fact that most propagation media are linear at the light levels that would be
used for such signals. Interconnection paths formed by flows of electrons have a
strong tendency to interact, due to the fact that such flows are composed of moving
charges.

Optical interconnections can obviously be utilized in an all-optical computer, for
which the basic logic operations are performed by optical logic elements, perhans
based on optical bistability. However, they can also play a more immediate role in
hybrid opto-electronic computers, in which the tendency of electrons to interact is
exploited to produce nonlinear interactions of signals in electronic logic gates, while
optics is used to provide interconnections at some levels of architecture. Applications
of optics for interconnections at high levels of architecture (machine-to-machine or
processor-to-processor) are currently most easy to realize, while optical interconnec-

tions at the lowest levels of architecture (e.g. gate-to-gatc connections) are most
difficult to realize.

In this paper we examine some fundamental properties of optical interconnec-
tions related to their fan-in and fan-out properties. The term fan-out refers to the
splitting of a single node or interconnection into several interconnections, each
carrying the same signal. The term fan-in refers to the coming together of several
interconnections into a single interconnecion or node, all of the component signals
being added to form a single signal. The two cases are illustrated in figure 1. We \\ill
show that optical and electronic interconnections share some properties but also
differ in some fundamental ways. In particular, we shall see that electronic and
optical interconnections are quite similar with respect to their fan-out properties,
but can differ markedly in their fan-in properties.
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(a) (/t

Figure 1. Representation of (a) fan-out and (b) fan-in.

2. Fan-out
It is very common in the construction of complex logic circuits that the output of

a single gate must be sent to the inputs of several gates that follow. A simple example
is shown in figure 2 [1] in which the output of one inverter drives the inputs of several
inverters in parallel. In order to activate the parallel set of inverters, it is necessary
that the current supplied by the first inverter charge the input capacitances of the
following inverters to the point where the voltages across those capacitances all
exceed the logic threshold voltage. Other examples can be found at higher levels of
computer architecture. For example, in the construction of a crossbar switch for
interconnecting several processors and memory modules (see figure 3), fan-out must
be present if the switch is to offer broadcast capability, i.e. the capahility of a single
module to broadcast a common message to several other modules simultaneously.
Again a single output must charge the inputs of a parallel array of capacitances.

It is tempting to believe that optical interconnections offer a distinct advantage
vis-a-vis electrical interconnections when substantial fan-out is present. I lo\\ ever, as
we now argue, this is generally not the case. An optical interconnection (figure 4 (a))
is established by driving an optical source (a laser diode or an LED) with an electrical
current. The optical source converts the flov of electrons into a flow of photons,
subject to certain limitations on the efficiency of that conversion. A portion of" this
flow of photons is incident on a photodetector at the far end of the interconecttoo.

-Ite)

F~igure 2. F:an-out o)f connections from one inverter to other nv'erters.
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Figure 3. A crossbar s%%itch. Modulcs 1, 2 and 3 can be connected to modules 4, 5 and 0 in an

arbitrary fashion.

01)

Figure 4. ()pticai interconnections (a) for a one-to-one interconnect, and (b) \with N-fold

fan-out.
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The photodetector converts the flow of photons into a flow of electrons, again subject
to certain limits on conversion efficiency. Finally, the flo\ of electrons must charge
the input capacitance of a gate to its logic threshold voltage. Just as the flow of
electrons must be divided N ways if an electronic interconnection with .\-fold
fan-out is to be established, so too the flow of photons must he divided A' ways if an
optical interconnection with N-fold fan-out is desired (figure 4(h)). In both the
electrical and the optical cases, fan-out by a factor N will result in an N-fold increase
in the time required to charge the N capacitors at the ends of the N interconnections,
unless the rates of electron and photon flows are increased by a factor-.\' to
compensate. Thus an optical interconnection in effect suffers from the same
capacitive-loading effects that an electronic interconnection experiences, contrary to
what might have been expected at the start.

There is one respect (in addition to the immunity of optical interconnections to
interference mentioned earlier) in which optical interconnections do offer a potential
advantage. If the length of a metallized electronic interconnection is substantial, then
the capacitance of the interconnection itself may become comparable to or even
greater than the capacitance of the gate at the far end. The increased capacitance \\will
result in slower charging times and lower transmission speeds for the interconnec-
tion. An efficient optical interconnection does not possess any characteristics similar
to the capacitance of the interconnection line itself. Therefore when long inter-
connections are required, optics may have a distinct advantage. I lowever, a recent
examination of the chip-to-chip interconnection problem [2], for which inter-
connection lengths of only a few centimetres were assumed, showed that the
capacitances of the metallic interconnection lines were small compared with the
capacitances of the bonding pads, indicating that this potential advantage of optics
may not be important for short-distance communication between chips,

)ne important difference between optical and electronic intcrconnections
becomes evident when further optical consequences of fan-out are fully considered.
Such consideration requires the use of the principle of conservation of generalized
i;tenduc [3, 4], often referred to as the constant radiance theorem [5]. According t this
theorem, the product of the cross-sectional area and the square of the numerical
aperture of an optical beam must remain constant under any losslcss linear
transformation of that beam. Thus the fan-out of a single optical beam Of cross-
sectional area A into N beams, each of cross-sectional area .4, must be accompanied
by a reduction of the numerical apertures of the new% beams by a factor \ . Such \\ill
be the case whether the optical interconnections propagate in free space or in
multimode waVeguides and fibres. This theorem, which is derived using the
principles of geometrical optics, does not hold in the case of single-mode guides. for
which geometrical optics is not valid. The fact teat fan-out of optical beams changes
the beam divergence has no obvious analogue ill the case of electronic interconnec-
trins. The implications of the constant radiance theorem in the case of fan-out, \ hilc
important, are overshadowed by those for the case of fan-in, to \\ hich we now turn.

3. Fan-in
just as fan-out of multiple connections from a single logic gate i',. common, so too

fan-in of multiple connections to a single logic gate is often required. Fan-in is also
required at higher levels of architecture. For example, some forms of crossbar s\% itch
are constructed in such a way that all input lines can simultanCusly address a single
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output line. Therefore, it is important to consider tile consCuences of fan-in for
both electronic and optical interconnections.

1'igure 5 illustrates a generic kind of fan-in connection. When the connections are
electrical, all sources of current must be capable of charginu the input capacitance of
the final node to the logic threshold voltage. However, if the output impedances of
the devices driving the lines are finite, a portion of the current generated bv one
source will flow back through all other lines, causing the ri te of charging of the
desired capacitance to be slower than w\ould be the case , ith no fan-in. The degree to
which the speed of the circuit is limited depends on the output impedances of tile
sources and on the number of such lines being fanned-in to a common point.

It might appear at first glance that optical interconnections do not stffer from
fan-in limitations of the above kind. Indeed in some cases they do not, hut in other
cases there is a very important limitation associated with optical fan-in, \which, \h ile
different in origin than the effect encountered with electrical interconnections, none

the less has similar or even worse consequenc, s. The Optical effect can again he
viewed as a consequence of the constant radiance theorem, and its serioLsness
depends on the relationship between the cross-sectional areas and the numerical
apertures of the beams that are being fanned in, and the same parameters of resuhlant
beam after fan-in. If the fan-in of N identical optical beans is onto a detector \with N
times the cross-sectional area of the individual beams, or \ith an acceptance
numerical aperture that is \ NV times the numerical aperture of one of the Incident
beans, then there need be no penalties associated with fai-in (aside from tile fact that
a large optical detector gcncrally has a high capacitance and a corrrcspondin k sl(;X

speed). On tile other hand, if the fan-in requires that .N idcntical and mutually
incoherent beams be combined to form a single beam ith tie same cross-secti nal
area and the same nlneric'il apt-rlure as those 01' any one oft ile incident heamls, then

the constant-radiance thorcm iimpics that tMe optmal pou r d(ered t'nto th'
resltant hea camnot e'xi'd I N thf o/ III to ta / t ident ,ptljal povwer carried b. all the
interconnections.

The above cWIcIlusion can have profound cff'ects on the design of optikal

interconnections. For ev\inple, one po.ssible ,Iw\ to atternipt an . -f Id fan -in iOf

optical beams is b\ inaci ,,f a holographic optical clemnlt used as a 1Man comnbine~r.

:igure 5. Fa -ii-n f elect rim l mm tti otits,

. .. . " - -flt
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The hologram is recorded by sequentially or simultaneously recording tile itter-
ference patterns between a sinule reference plane wa e and X object plane %Nayes

travelling at different angles with respect to tei reference wa\a ( figurc 6 (ti I). WVI .\"

beams are incident on the resulting hologram at angles duplicatingT thosc of the
original object beams, there will be generated a beam propagating in the direction of
the original reference wave, carrying contributions from all of the incident beams
(figure 6(b)). It has been assumed for simplicitly that the \avelength of the li,,ht
exposing the hologram is identical to that of the light incident during the btam-
combining operation. The cross-sectional area and the divergence angle of the

combined beam should be identical with those of the beams incident on the
combiner. However, the constant-radiance theorem implies that, on the average, the
new beam can contain no more than I /Nth of the powver from each of the incident

beams, the average being over all possible relative phases of the incident beams. The
light not carried by the combined beam can be shown to appear in other orders of
transmitted light.

An intuitive argument confirming the prediction of the constant radiance

theorem can be reached by considering the same holographic element illuminated by

a backwards travelling version of the original reference wave. The hologram can send
at most I \Nth of the incident light into each of the back-propagating versions of the
object \waves. Thus any single grating in the hologram can be at best 100 A' per cent
efficient, and in general will be even less efficient.

It has been implicitly assumed in the above arguments that the beams to be
combined have random phases with respect to one another. Such will be thle case if
the beams to be combined originate from different optical sources. It will also be the

case \%hen all beams originate from the same source unless the entire optical
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interconnection system is stabilized to maintain absolutel, constanit paths i all

arsis Such a stabilzitio,
- 

Ses unikely in practice. lor any One realizaton (i

rcliti\e pha.,es betswen beams, the amount of optical pg )\. r tr,otrrd to I-c
resultant beam \ould be influenced by interference betten the various contribut-
ing beams, and could be greater than or less than the po,,.er predicted h the
constant-radiance theorem.

Similat conclusions also apply if the beams are travellintl in single-niode
waveguides. It is known [6] that the amount of piover coupled into a sinule
monomode waveguide from a Y-junction of two identical monoimode waveguides
(ligure 7) carrying identical optical powers may be as great as t\ice the power carried
by one Of the input guides, or may he as small as zero, depending on the relative
phases of the two incident beams. If the phase difference between the two beams
varies randomly and uniformly over 2r radians, then the predictions if the constant-
radiance theorem are obtained, namely on the average, one half o the incident poor

\\ill be transferred to the outgoing guide.

4. Concluding remarks
The assumption that optical interconnections are superior to electronic inter-

connectiiis froiii the vicw\.poit of fan-out and fan-in is in general un\ arranted. The

fan-out properties of optical beams are essentially the same as those of electrical
cinnections. 'l'he fan-in properties of optical beams are somewhat more conples
than those of e)ectronic interconnections. If N identical incoherent beams are to fan-
in to a single beam with the same cross-sectional area and the same antiular
divergence as the input beams, then there must be a significant and fundamental loss
of power associated with the fan-in operation. If the N beams are mutually coherent,
then the amount of po\er transferred to the resultant beam depends on the relativ.e

phases of the component beams, but averaged over all possible relative phases.
results identical to those of the incoherent ease wxill be obtained.

There are still giod reasons to be interested in optics for interconnections,
principally the relative immunity of optical beams to mutual interference etfects. A
second important reason for interest rests on the potential for constructing dynamic
optical interconnection networks, which would allow rapid reconfiguration of
interconnections and thereby offer a new degree of freedom for computer design.
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Real-time enhancement of defects in a periodic mask using

photorefractive Bi 1 2SiO20

Ellen Ochoa, Joseph XV. Goodman, and Lambertus Hesselink

I )cprtnirt J-:tc"I Eno~novr ri tg. S tanfordu I 'ni -etrsit Ii I nforniort ion Sv steis Liihorato ry, Stunf lrd, Cali forni 9oi43t05

Th is nnexperimental results of' real-time opia eetehneetoa periodic mask are reported. A
low% - ii e nsi iv reference wave in terf'eres with the Forie r t ransform tan object beanm to form a hologram in a photo-
reftract ive cr *\still. The no nli near properties of the crystal performn a filtering ope ration. and phase -conjugate read-
out resltS iii a det'ect -en ha tied image. D efect, ol'size 10 pi in 10 Pollg have been easilyv detected wvith high signal -
to- noise ratito. and a discussion tit' pertormn ce limitations is presented.

Wie cotnsider the problem of selectivel\ enhancing de- input plane, and the defect-enhanced image appears at
fects in a mask that consists of most ly periodic struc- the output plane, in a timle limited only bNy the time
lore. Thiis typ~e ofproblem iin ige processing occuirs, constant of thle photorefractive material. This time
for example. in the inspection of integrated -circuit constant, which depends onl the material used and the
masks. lDigital techniques for inspection of a two- incident light intensity, ranfged from about 50 to about
dimensional field, generally utilizing a dual-scanning 250 rnsec for our experimental parameters. This
microscope s-tm n sophisticated algorithms for method also differs from that described above in that
comparison and detection, are complicated and timre all iiperation-, are carried (out in thle Fourier domain. To
consunming".1; Optical systems. however, offer the tiur knotwledge. this work is the first demonstration of
advantage oit pairallel processing. Furthermore, there a real-time system for enhancing defects in a periodic
is nol excessive requirement for accuracy in the output mnask.
in terms of thle actual intensity at each poitt It is The technique for performing real-time defect en-
sufficient that thle signal associated with thle defect ble hancemient is based onl two observ-ations. Thle first is
mutch larger than the signal associated with the sur- that the Fourier transform of' a periodic object is an
r fiit pricsrutre mophtfr kxmpe a array tif discrete spikes %%hose width depends itversely

thrsliF~lniopraton allIleusd t deermnethe Onl the inll)ult field size and whose spacing depends in'-
(ICIILI O~atoll.versel\ otn the perioid of' thle mask. Ini contrast, the

Optia ptafitrntehiustpefm defect Foturier transformn of' ml defect isacontinuous
enhancement have blee examined in the past with re- functioin that is several orders of magnitude less intense
garil to such applications as inspection of the electron- than the p~eriodic spikes. Thle second oibservation is
licaml collimating grid and the si licon -diode -array target that the diffraction efficiency of a volume phase boo-
for a television camera tube as well as for inspection of gramn formed in a photorefractive medium is maximized
photomiasks used in the manufacture of integrated whlen the intenlSitie'S Of thet two Writing. beams are al)-
circuits' 1 These systems used a filter in the Fourier p~roximate]\ equal and dec-reases as the differentce in
p~lante to attenuate the discrete spatial frequencies of the intensity increases. For a reference platte-wave in-
period(1ic potrt ion of the mnask, so that, onl retransforma- tenlsity , vI) more intense than thle object -beam int ensity

in. t iny defects were present in the out put. Although U.), , the outplut is, propirt ional to the object -beam linl-
thle restilts tif'such syste ins were promising, the useful- tensity; for ait object beami mo re intense than I hie ret-
ness oft hie techniqlue was limited by the fabrication time erence beam, the edit 1)1 is pri i1)t ii ital to the i ititeissit v
or (liftictiltv of the filter and by the need to use high- inverse of the object beam. A t *ypical ditIract itt -efi-
quality, low-f-nmrber lenses when inspecting objects ciencv versus beam - rat ii curve is lot ted itt V i-_ I otn a
uif large dimensions. Recently the second coinstrainlt log, log, scale. as, tlniiiw thai licamt ratito H I 1 I. 11
was remotvedl b-y employ ing, holographic recoirding oft hie varined by changing I \\hill, kctilii%, /. ti\iil lii
itit lilIt (-illimlncd With phase-conljugate readout.'' curve was geneileaed b\ i'i2 i titioidirdl 1\- ulInik
Altlimiitgl this mlet hod has been used toi detect sbi exlpressiiit for dfii ractio it i-l it
rotni-tir ililecis. it requI~ires twot processing steps: liir

cat iti'.li tit Ilie itislicitil. a fitw% holog-ramn mtit' vxpii (i ! L -P i''' -111
wt-tirift-if aind [Or etich dlifferent typie otf ttisk. a new

f)1 1 rili ilter tlitlist lie mlade. aitd suhi itiiit ill p~~ir i tt i lil
l~~adi c trs ilt- boi II(to oenhiance detects in real titne. No, .to BS4) ir\-t.t ,i 'ii, k '

;~Ii a il ttielt-aitiv- r o . I*eo h rv t lil o l iin filu l111 ,1
h logi~rapiciti revot it-l tg. lilt cring. and jihase-cttit- pie fie-l d o th f .') kV t ciii rl1J,, 1i,:- 11t,_

ii i::tt t ri-;iili itt tin cc-(es it) lie lterl( ried sitiolt a- i1 il te ref rail i - iiic lix ih i, -i 1
ri I llt- ttiaik it, ble in tid ed i tilatcedil iiiIll, as1 MA I a! c-xpcrim nt-oh i ii i
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00 transmitting area of lonc period of the pattern, and I'm,
0)/a 2 is the fraction of the mask area that is transmit t -

.00 ing. At the crystal, the hologram should be rec(orded
such that the intensity of the periodic port ion of " u.
c) 2 is greater than the reference-beam intensity Ir. :rod

-. 00 the intensity of the defect portion of 'I(u, t, j is less
og / than 4. MathematicallN, if ) is defined as the rehvat

dynamic range of the periodic portion and I, is the in-
°.00 tensity incident upon the mask, then the two condit ion-

0\ are
... / li WL'- 0cO 01 1 t ,((-

tA', a 4  D J <

-5 .00
-.. 00 -2.00 00 .00 -. 00

hog(hean, ratio) ".- ---- I;S r

Fig. 1. Diffraction efficiency versus beam ratio. Shown is cL
a typical curve for photorefractive BSO or BGO. iX12 x/2 ph, - -

portion of the curve, are given in Ref. 11.) Therefore, f
a defect can be enhanced by focusing the Fourier X phte
transform of the mask onto the photorefractive crystal FTL ,s c11
and making the intensity of the peak spectral compo- 'o1arizer

nent that is due to the defect less than or equal to the _
intensity of the reference beam. The intensity of the ,.-.

spikes that is due to the periodic structure will be so Ojc /

much greater than the reference-beam intensity that
the corresponding diffraction efficiency will be very
small. Thus the refractive-index pattern formed inside
the crystal performs both recording and filtering oper- Fig. 2. Experimental setup. VA/ES, variable attenuator!
at ions. beam splitter; BS, beam splitter; CL, collimating lens: PCB,

polarizing-culbe beam splitter: FTL, Fourier-transform
The technique of using a weak reference Ibeam and lens.

a strong object leam to perform optical processing is not
new. Hagnarsson recorded filters in photographic film
with this technique in order to perform division. a This
technique has also been used in photorefractives to
obtain edge enhancement of' binary images, by both
Huigna.d and Herriau in BSO'1 and by Feinberg in
BaTiO:o.-' However, to our knowledge, this is the first
use of the technique in photorefractives to enhance se-
lected features in an object beam and su, ppress
others.

A Fourier-optics analysis can be used to describe the
propagation of light from the object to the crystal.
Suppose that the mask has dimensions W X L and that
a small transparent defect, located at (xo, yo), has di-
mensions tv X 1. Let p(x, y) represent one unit cell of
the periodic structure, which is spaced at intervals of (a) ()
length a. The intensity of the Fourier transform at the
crystal, assuming W, L >> a and unit illumination, is Fig. :. Input mask and output-defect-enhanced image. The

1 In m\ Cordintes ofthe seven (letects, measured in units of numbers
I T(u , t )2 ( WL4)2 j- I , of squares and taking the center of the lower left -hand squarea a y, a a to be (t, 0t) are

X sinc2[ ( W rtlsinc2IL (, Defect Size Coordinates
(P pI- (hor.. vert.)

+ (u'l)" sinc2(wu) sinc2(L) ,X)) x 0.t.51
500 x Il()l (10. 13,5)

Ilt X 5)) (12.5,25)
where the sinc function is as delhid by Bracewell.I"I t(, x 11l:) (15, 20,5)
The spatial frequencies' variables are related to spatial 25 X 1:)) (24. 27.5)
variables as u = x/Xf and t, = y/Xf, and lU, 0, is the loi x 25 (25.5.22)
Fourier transform of p(x, y). (O, 0) represents the I ()t X In0 (25.5, 15)
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.0. plane-wave illumination, the filtering properties (4i the

crystal cannot be described by simply a beam-ratio
dependence. Further investigation into the artcual
behavior of the crystal is currently being undertaken.

The resolution obtained in the output was con-

strained by two factors. The primary constraint was
-7 the size of the crystal. Given the f-number of the svs-
Ztem, the crystal captured only the central fifth of the

primary lobe of the sinc function that was due to the
smallest defect; therefore the output of the sYstem

ii0 jproduced the defect convolved with a smoothin, func-
tion. Thus reducing the f-number of the optical systci

i k~4i (and using a crystal of larger dimensions) will greatly
improve the resolution capability. The second con-

0 straint on the resolution was the size of the imaging el-
position ements of the CCD camera, each of which measured 23

Fig. 4. Intensity line scan of 10 pm X 100 pm defect. Graph um X 13.4 pm.

illustrating the signal-to-noise ratio obtained for the smallest In summary, a method to enhance defects in a per-
defect. odic mask in real time has been presented. A photo-

refractive crystal is used to perform holographic re-
cording, filtering, and readout process simultaneously.

If the defect is opaque rather than transmitting, then Preliminary experimental results show detection of
the second condition should be modified: defects down to 10 pm X 100 pm in size. Detection of

(cl 1 n mn -'~. 1mI2 smaller defects should lie possible by using anl opt ical- _m I i I < Ir. system with a smaller f-number and a camera with/smaller resolution elements.

The experimental setup used to obtain defect en-

hancement is shown in Fig. 2. An argon-ion laser (N = This research was supported by the National Science

514.5 nm) was collimated and split to form the two Foundation-Materials Research Laboratory program

writing beams as well as the probe (readout) beam. A through the Center for Materials Research at Stanford

BSO crystal, of size 8 mm X 8 mm X 8 mi, was oriented University and by the U.S.Air Force Office of Scientific

with the x direction shown in Fig. 1 along a 11101 axis. Research. The assistance of Mike Smith and Zora

An f/4.9 lens was used to perform the Fourier transform, Norris in the mask preparation is greatly appre-

and the output was detected by a charge-coupled device ciated.

(CCI)) camera. The combination of a half-wave plate,
a polarizing-cube beam splitter (PCB), and a second
half-wave plate allowed the beam ratio to be changed References

while the polarizations were kept the same. To improve 1. J. D. Knox, P. V. Goedertier, D. Fairbanks, and F. Caprari,
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Abstract

Methods for using neural networks for computation are considered. The success

of such networks in finding good solutions to complex problems is found to be depen-

dent on the number representation schemes used. Redundant schemes are found to

offer advantages in terms of convergence. Neural networks are applied to the com-

binatorial optimization problem known as the "Hitchcock problem", and signal pro-

cessing problems, such as matrix inversion, and Fourier transformation . The concept

of programming complexity is introduced. It is shown that for some computational

problems, the programming complexity may be so great as to limit the utility of neural

networks, while for others the investment of computation in programming the network

is justified. Simulations of neural networks using a digital computer are presented.

,
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I. Introduction

Even the fastest modem computer cannot compare with the brain of an infant in

the performance of intelligent information processing such as image processing and

pattern recognition. This well quoted fact suggests the possibility of a quite different

type of computer. The fundamental difficulty in creating artificial intelligence on con-

ventional digital computers comes from the large difference in architectures of infor-

mation processing between digital computers and human brains, i.e., tho sequential

processing in von Neumann machines and the massively parallel computation in

human brains 1. Neuroscientists have revealed that the massive parallelism and the

computational richness in the human brain lie in the global and dense interconnections

among a large number of identical logic elements or neurons which are connected to

each other with variable strengths by a network of synapses 2 . An artificial neural net-

work system that can perform parallel computation and the function of natural intelli-

gence is extremely attractive as a future-generat;on computer.

However, there exist two major problems that must be attacked before the realiza-

tion of such a neural computer. The first is a hardware problem of how to implement

those global and dense interconnections among many neuron-like logic elements, and

the second is a software problem of how to program such highly parallel computation

on a neural network system. We may take two different approaches to the first prob-

lem, VLSI-based interconnections and optical interconnections 3 . Neurons in the

human brain are interconnected in three-dimensional space since it is the most natural

and efficient way of interconnection, but VLSI-based interconnections are inherently

two-dimensional in nature. Optical signals, on the other hand, can flow through three-

dimensional space to achieve the required interconnects between neuron-like logic ele-

ments. Based on this idea, severai schemes of optical computing have been

--/, . lm,, .,. m. ,m = .
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proposed 4 7. Among them, Psaltis and Farhat 4 '7 recently reported an optical imple-

mentation of the Hopfield neural network 8,9 using an optical vector-matrix multi-

plier 1 0 as a programmable interconnector, and demonstrated the feasibility of optical

content addressable associative memory.

Extensive studies have been done on the basic characteristics of the neural net-

works themselves 1, but the second problem of hov to program them to do various

computations of practical interest has not been fully studied except in their ,pplication

to associative memory 12.Quite recently, Iopfield and Tank 1 3 showed that a certain

class of optimization problems can be programmed and solved on their neural network

model. They demonstrated the computational power and speed of their neural network

by solving one of the NP-complete problems 1 4 known as the "Traveling-Salesman

problem." The purpose of this paper is to extend their idea and explore new possibili-

ties of programming and solving on neural networks other various non-biological prob-

lems of practical interest. We emphasize that our goal is not to propose mechanisms

that might actually be utilized by the brain, but rather to apply neural network ideas to

computational problems, and thereby to open some new avenues for realizing powerful

man-made computers.

WVe first review briefly the Hopfield neural network model, and describe some

minor modifications. Next, we propose a new scheme to represent numbers by neuron

state variables, which is essential in solving numerical problems on neural networks.

Based on this number representation scheme, we show how we can program and solve

combinatorial optimization problems 15 known as network flow problems 16 or more

specifically as the "Hitchcock problem," 17 and simulate its computational performance

on a digital computer. Then, we give a programming scheme to perform signal pro-

cessing for signal recovery, such as the computations of matrix inversion and Fourier
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transformation. The performance is again simulated on a digital computer.

The important idea of programming complexity is then introduced, and it is

shown that for some problems the data-dependent programming complexity is so great

that computations invested in finding the right neural interconnection and bias patterns

may equal the complexity involved in solving the problem directly without a neural

network. For such problems, neural networks, as we now understand them, may not

be an appropriate architecture for computational problem-solving.

We conclude with the discussion of the limitations and the problems that remain

to be solved in future.

II. The Ilopfield Model and Its Modifications

A. Tie Ilopficld model

The Hopfield models '9 consists of a number of mutually interconnected nonlinear

devices called "neurons" whose states xae characterized by their outputs Vi (which may

take values between 0 and 1). The dynamics of neurons in the Hlopfield model can be

described in both discrete and continuous spaces.

The discrete model is illustrated in Fig.1. At fan-in terminals £i, each neuron i

receives inputs TijV j from other neurons j and a bias input 1i associated with itself;
N

Ui = ijVj+ i, (I)
j=1

where N is the number of neurons, and Ti are elements of an interconnection matrix

representing the strengths of connections. At discrete times, switches SWi turn on, and

the inputs Ui are fed back to corresponding neurons to change their states or to leave

their states fixed according to a threshold rule determined by nonlinear operators NLR i,

such that
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Vi(k+]) = stp[ Uj(k) ], (2)

where k is discrete time, and stp(x) is a unit step function which is 1 for x>O, and 0

for x<0. Thus, neurons take binary values either I or 0, and the binary outputs are sent

out from fan-out terminals Qj and distributed through the interconnection network to

re-generate new inputs at the fan-in terminals Y-i.

In the continuous model, neurons change their states according to the following

equations of dynamics:
N

dUi/dt = ITJVj + I (3)
j=1

v i = g( Ui), (4)

where t is continuous time, and g(x) is a nonlinear function whose form can be taken

to be

g(x) = (112)[ 1 + tanh(x/xo) ], (5)

which approaches a unit step function as x0 tends to zero.

-lopfield 9 has shown that if TipTji , neurons in the continuous model always

change their states in such a manner that they minimize an energy function defined by
N N N

E - -(1/2)j 2TiJVjVj - XILVL, (6)
i=1 fI i=1

and stop at minima of this function. The same is also true 8 for neurons in the discrete

model if we further assume that Tii--O.

B. Neuron transition modes

We adopt the discrete-time model because it is much easier to simulate on a digi-

tal computer. But when Tij O, the model sometimes shows an oscillatory behavior or

keeps wandering around the state space near the minima of the energy function. Most

problems of practical interest require self feedbacks (Tii O) when programmed on a
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neural network. We therefore need to design transition modes that reduce such

phenomena. Without claiming any similarity to natural neuron transition rules, we

choose four different discrete-time transition modes for examination.

(a) Direct synchronous transition mode

All the transitions occur simultaneously when the switches SWi turn on in syn-

chronism at discrete times k. The fan-in inputs are directly fed back to generate new

neuron states. A continuous nonlinear function g(x) allows neurons to take state

values between 0 and 1. The following equations are assumed to hold:
N

U1(k) = XFEY1§(k) + I. (7)

Vi(k+l) = g[ Ui(k) ]. (8)

(b) Differential synchronous transition mode

The differential equations in the continuous model are approximated by difference

equations. Transitions occur synchronously. In this case,

N
Uj(k) - Ui(k-1) = XTiV(k) + 11 (9)

V,(k+l) = g[ U,(k) ].
This mode requires one memory cell for each neuron to keep its previous input.

(c) Direct asynchronous transition mode (random delays)

This mode is similar to mode (a), but the switches SWi turn on and off asynchro-

nously, i.e. with random delays. In this case,

N

U5(k - At,) = T T1 Vj(k - Ati) + 1 (10)

V(k - At i + c) = g[Ui(k - Ati)]
where At i are skews caused by time delays in the network, and are fractions of one



-7-

clock time, while E is a small positive constant. Without loss of generality we can

assume

Atl <_A: 2<_. ... _

because the numbering of neurons is arbitrary. In this mode. one particular neuron i

need not wait for the last neuron N for synchronization, and when it decides its new

state, it can make use of information about new states of other neurons that have

already renewed their states.

(d) Differential asynchronous transition mode (random delays)

This is an asynchronous version of mode (b). In this case,

N
Ui(k - Ati) - Ui(k - Atj-1) = (k - Ati) + Ii, (11)

j--

Vi(k - Atq-4-) = g[U,(k - Ati) - Ui(k - Ati-1)]

Using simulations on a digital computer, we found that the synchronous transition

modes (a) and (b) gave rise to large oscillations in the energy function when Tii#O, but

that the asynchronous transition modes (c) and (d) have greatly reduced oscillatory or

wandering behavior, though the reduction is not complete. While mode (c) is quicker

in minimizing the energy function, mode (d) has more reduced oscillations. Depending

on the characteristics of the problems of interest, we shall make a proper choice of a

mode from (c) and (d).

III. Number Representation Schemes

In most problems of practical interest, solutions are described by a set of

numbers. Therefore we must have a means to encode numbers on neuron state vari-

ables Vi. While allowing neurons to take continuous state values during the process of

energy function minimization, we demand that they take binary values of 1 or 0 at the
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final stage so that we can obtain digital solutions like those given by digital computers.

For simplicity, we first assume the numbers are positive integers including 0, though

we can also represent general bipolar and complex numbers by using additional neu-

rons. We consider three different ways of mapping the positive integer space Z+ onto

the neuron state space V.

A. Binary scheme

A common way of representing numbers in digital computers is to use binary

digits. For example, 5 is expressed by 0101. This scheme uses log2 (N+l) bits to

express a number N. If we let one neuron represent one bit, we have a one-to-one

correspondence between elements in the number space Z+ and those in the neuron state

space V. Despite the economy in the number of bits or neurons used, a system based

on the binary scheme is not fault-tolerant. In other words, even a single failure in a

highly significant bit gives rise to a large error in the number represented.

B. Simple-sum scheme

In this scheme, a number is represented by a simple sum of the neuron state vari-

ables Vi, i.e., the total number of firing (Vi=1) neurons. For example, 5 is expressed by

00111-11, 0101111, 1101011, etc., all of which have five 1-bits. This is a one-to-many

mapping from Z' to V, and the numbers have degenerate representations. This scheme

requires N bits to express a number N, and is not economical in the number of bits or

neurons. However, it is highly fault-tolerant because an error in a single bit does not

cause a large error in the number represented. The fault-tolerance of the human brain

is believed to come from this type of averaging over a large number of neurons

So far, we have compared the binary scheme and the simple-sum scheme from

the viewpoint of their fault-tolerance. More important is their difference in problem-

_,mr . . . .. !I I - '
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solving capability. As will be seen later, problems are solved through a spontaneous

energy minimization process in a neural network, and the solution is given by a point

in the neuron state-variable space that is reached after this minimization process. In

the binary scheme, there is only one point in the state variable space that gives a

correct solution. In the simple-sum scheme, on the other hand, multiple points give the

correct solution. Because of this degeneracy and the clustering of quasi-minimum

energy points in the neuron state-variable space, the simple-sum scheme offers more

chances to reach the correct solution. Suppose, for example, 3 is the correct solution.

In the simple-sum scheme, we can get a correct solution when the final state is either

00111, 10110, 11100, or 10101, etc., whereas we can get the correct solution in the

binary scheme only when the final state is 00011. Simulation results reported later in

this paper support the hypothesized superiority of the simple-sum scheme.

C. ( roup-and-weight scheme

Despite its merit in fault-tolerance and computational capability, the simple-sum

scheme requires too many neurons when solutions include large numbers. We propose

the group-and-weight scheme which lies between the binary and the simple-sum

schemes. In this scheme, we divide the total q bits into K groups each of which has Al

bits (qfKM), and interpret the groups as digits whose numbers are given by simple

sums of the bits in the corresponding groups. For example, with q=6, K=2, A1=3, 5 is

expressed either by 100 100 (4'x(l+0+0) + 40> 1+0+0)= 5), 010 001, 001 010, or

100 001 etc. A number expression for the simple-sum scheme is given by

K M

k=l i=1

This expression includes the binary and the simple-sum schemes as special cases.

When we put M=l and K=qt , we obtain a number expression for the binary scheme
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(13)

and when we put M=q and K=I, we obtain a number expression for the simple-sum

scheme

q

(14)

The group-and-weight scheme requires Al log, 1f(N+l) bits to express a number N.

This also gives the number of bits required in the binary scheme when we put 1I=1,

and that required in the simple-sum scheme when we put M=N.

D. Bipolar and Complex Integers

So far, we have restricted our number representations to positive integers, but

they can easily be extended to include bipolar and complex integers. A bipolar

expression can be obtained simply by adding a negative bias integer to the expression

for positive integers given by Eq. (12):

( ,1+1 )k i= V(k1)M~i] - [(1/2) LM+I)K - 1 (15)

where (1/2)(.1+1)K - is half the largest positive integer that can be expressed by

Eq. (12), and the floor operation [i1 gives the nearest integer value less than x. Eq.

(15) can express bipolar integers ranging over ±[(1/2) (M+I)K-1]].

To express complex integers, we need twice as many neurons, i.e., neurons O p

and 1t) that represent real and imaginary parts, respectively. Complex integers are

expressed by

, A1+1)k-IIR)[I)/2) - I2 ) +I)K - 1 (16)

k-- I+i=



wherej 2 = -1.

E. General Real and Complex Numbers

We can also express numbers with fractional digits, e.g. 13.26, 3.14, etc., by

usir(g more neurons and Itbeling them with negative subscripts (i<O), e.g. i_, V._2,

etc., so that the parameter k in the first summation in Eq. (12) can run from a negative

intcer -K'; the number representation becomes

1 1) X 1 (kI),f+i]. (17)

Equation (17) can express numbers ranging from 0 to (M+I)K- (I+l)(A'4), with a

minimum digit of quantization being (M+I)-(K'+ 1). Just as we did in subsection D, we

can easily modify Eq. (17) to a form similar to Eq. (16), so that it can express general

complex numbers. Again here, the group-and-weight scheme includes the binary and

simple-sunm schemes as special cases. If we put M=1 and K=q, Eqs. (15), (16), and

(17) give the expressions for the binary scheme. Likewise, the expressions for the

simple-sum scheme can be obtained by substituting M=q and K=1 into Eqs. (15) and

(16), and AM:q and K=-K' into Eq. (17).

Finally, it should be noted that the number representation schemes we proposed

here ari all based on linear mapping of the number space onto the neuron state space.

In other words, numbers are represented by linear combinations of neuron state vari-

ables. This is an important point in designing number representation schemes for the

Ilopfield neural network, since the energy functon Eq. (6) has a quadratic form with

respect to neuron state variables. Other nonlinear mapping schemes, like floating point

expressions, cannot form the energy function required by the Ilopfield model, because

the floating-point expressions need to have neuron state variables in exponents. This

certainly limits the possibility of covering a wide range of numbers using a small

• i Ilil l I I
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number of neurons, but for a neural computer it is not a fatal disadvantage because the

use of ample neurons with much redundancy is the key to improving its computational

capability and system stability.

IV. The Hitchcock Problem

Based on the number representation schemes described in the previous section,

we show how a combinatorial optimization problem known as the Hitchcock prob-

lem 17 can be programmed and solved on a neural network.

Suppose there are m sources (X=I, . . . , X=m) for a commodity, with Sx units of

supply at X, and n sinks (Y=I, . . . Y=n) for the commodity, with a demand D) at Y,

as shown in Fig. 2. If Cxy is the unit cost of shipment from X to Y. the Hitchcock

problem is to find a flow fxY that satisfies demands for supplies and simultaneously

minimizes flow cost. Thus the problem is to minimize

m nI Y'Cx1fxY, (18)
X=1 Y=I

under the constraints

n

I, = SX (X=1,2 .... m), (19)
Y=I

and

Efxy = Dy (Y=1,2, . . . ,n). (20)
X=1

In Table 1, (a) is an example of a unit cost table, and (b) is an example of a solution

represented in the form of a flow matrix or a transportation matrix. The flow matrix

describes, for example, that from the source at X=2, two units of the commodity

should be sent to the demand at Y=l, and one unit to the demand at Y=2.
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A. Flow Matrix Representation

Table 2 shows how the flow matrix can be represented by neurons. We assign q

neurons to each matrix element to represent its content fxy, so that we use N=qmn neu-

rons in total for the complete representation of the flow matrix. For the convenience

of mathematical treatment, we specify each neuron by a set of three subscripts Vs),i,

where XY specifies the matrix element the neuron belongs to, and i specifies the posi-

tion of the neuron in that matrix element. Since the group-and-weight number

representation scheme includes the binary and simple sum schemes as special cases,

we express the flow matrix elements fxy by the group-and-weight scheme:

K " M

fxY = X (M+1)k-1-VXY,(k-1)M+i (21)
k=1 i=1

B. Energy Function

We use the spontaneous energy minimization process of a neuron network to

solve optimization problems. Since the energy function defined by Eq. (6) has a qua-

dratic form with respect to neuron state variables Vi, we find a quadratic function of

VXYi such that the minimization of the function corresponds to minimizing the flow

cost and minimizing violations of the constraints. An energy function that satisfies

such requirements is given by

E = -(A/2) Z Z Z (M+l)k- 1 1 - 2 VxY,(k-t)At+ (22)
X=I Y=I k=1 il

m n K Atl'Xk1
+(B/2) Z Z Z (M+I)k- ,-+

X=I I Y=I /__1 i=1I

nC ) m K At 2+(C12) y"Z = D i_ =Z(M+l)k-lVxy,(k_l1)M%+i

Y= I IA- I 1 I

+(D1) Z jCxY(41'+ 1"jXY,(k-1)A[2=I Y=I k-- i i=l

where A, B, C, and D are positive weight factors. The first term weighted by A is

A
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introduced for the binarization of the neuron state variables Vxyi, i.e. Vxy, = 1 or 0.

Because the function F(V) = -(1-2V) 2 , (0<V_<I) takes minimum values at V=0 and

V=l, minimizing this term assures that the final solution is given by binary numbers.

The second term, weighted by B, is introduced to minimize violations of the source

constraints given by Eq. (19). Likewise, through minimization of the third term with a

weight C, we can satisfy the demand constraints given by Eq. (20). The last term,

weighted by D, is for minimization of the total flow cost. The total cost is squared in

Eq. (22), but we may also introduce it without squaring, because the cost is always

positive. Note that the way we define the energy function is not unique, so that we

can solve the same problem by using different programs on the neural network, just as

is often the case in solving problems on conventional digital computers.

Considering the various terms represented in Eq. (22), it can be seen that solu-

tions with low energy do not necessarily correspond to solutions with low cost. Flow-

ever, if the weighting constants are properly chosen, then the binarization, source and

demand constraints will eventually all be perfectly satisfied, resulting in a one-to-one

relation between energy and cost. Thus eventually low energy solutions will

correspond to low cost solutions.

C. Interconnection Matrix

By analogy with digital computers, if we regard the expression for the energy

function Eq. (22) as a source program, then the next step is to compile or map it onto

the interconnection strengths T0 of the neural network. This can be done by compar-

ing Eq. (22) with the energy function Eq. (6), which is now written as

K Af K M

E =-(1/2)z Z I Z Tyk)fj ''('1M~ VXr(k.i,%f+, VXYk'-I),f+i'

X=I Y=1 =I i=1 X-I Y-1 k'=1 s=l

K M

-X X Z'XY,(k-I W+i IXY.(k-l)M4i (23)
X=l Y=I k=l -I
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where TykT,+ixyL'_)M+i, denotes the strength of the interconnection between the

neuron at the [(k-I)A1+ith position in the flow matrix element at XY, and the neuron

at the j(k'-I)V1+i']th position in the flow matrix element at X'Y'. By equating the

corresponding coefficients of the two quadratic equations (22) and (23), we can deter-

mine the interconnection strengths and the biases:

TXY,(k-1)M+i; X'Y,(k'-I )M+i' = 4A (M+ l)k- 6 XX'YY' 5Aii, (24)
- B(M+ )k+'-2; 5 , - C(M+ 1  2)+k'-y D (M+ )k+k'-2 CxCx ,,

and

Ixy,(k._)m+i = -2A(M+)1)k - 1 + B(M+1)k-ISx + C(M+I)k-iDy, (25)

where 57, is a Kroncker delta defined by

8 11 (Z=Z')

-,= (Z Z')

In Eq. (24), the first term describes self-feedbacks, the second and third terms

represent local interconnections between neurons in the same row (X'=X) and in the

same column (Y'=Y), respectively. The last term describes the global interconnections

between all neurons. If we put M=1 and K=q, we obtain the interconnection strengths

and the biases for the binary number representation scheme:

Txy,k; x'Yrx = 4A2k-I8xx,yy8 (26)

_ B2 k+l-28XX._ C2k+V-28yy - D2k+k-2 CxyCx,y,,

and

IXY,k = -A2k+B2k-Sx+C2k-IDy. (27)

Likewise, the interconnection strengths and the biases for the simple-sum scheme can

be obtained by putting M=q and K=I:

Txyi.x,yir = 4A8xx,rryii, - Bkyx, - C y - DCxy, (28)
and
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IXYi = -2A+BSx+CDy. (29)

D. Numerical Experiments

To examine the computational performance of a neural network, we simulated

state transitions of neurons by using a digital computer. We used the unit costs and

the source and demand constraints listed in Table 1. Based on these data, we deter-

mined the interconnection strengths and the biases. Since at present we have no sys-

tematic methods for finding the best combination of the weighting factors A, B, C, and

D, they were found empirically through the observation of several experimental results.

The lack of a systematic method for finding the weighting factors should not be too

disturbing. Such a situation is commonly encountered in solving multiple-target op-

timization problems (on a conventional digital computer), such as lens design problems

and color matching problems. However, it should be emphasized that the ability to

obtain a good solution depends strongly on making good choices for A, B, C, and D.

Throughout the experiments with the Hitchcock problem, we used the direct asynchro-

nous transition mode and the nonlinear function given by Eq. (5) with 0.1_Xo<l.

Figure 3 shows an example of the reduction of energy performed by a network

with N=60 neurons that represent the flow matrix based on the binary number

representation scheme (N=qnm=3x4x5=60, M=I, K=3). Table 3 shows the flow

matrices obtained at several points on the curve of Fig. 3. The weight factors were

chosen as A=27, B=C=80, and D--0.2. Since we have no a priori knowledge about the

solution, uniformly distributed random numbers between U and I were generated and

assigned to the initial states of the neurons. Starting from a very high energy state, the

neural network reduced its energy spontaneously by changing its state so that the flow

matrix could satisfy the constraints while minimizing the total cost. After six itera-

tions, we reached feasible solutions (marked by open circles) that satisfied all the

.I"
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constraints and gave 40 as the total cost.

After arriving at a solution using the neural network, it is important to develop

some understanding of how good that solution might be. To achieve this end, one

could enumerate all the feasible solutions that satisfy the constraints, and from this set

determine the best solution. However, since it is very hard to enumerate all the solu-

tions of under-determined simultaneous integer equations, Eqs. (19) and (20) (which

belong to a family of Diophantine equations), we used a Monte Carlo method and

found 50,000 feasible solutions. (Note that this calculation was performed simply to

check how well the neural network had performed.) Figure 4 shows a cost histogram

of the feasible solutions found. The solution with cost 40 is found to be one of the

very good solutions, which would be reached only with a probability of 6x10 - 5 if we

searched randomly among the feasible solutions. Yet it is still not the best solution,

which was confirmed to be 38 by using a stepping stone algorithm. Figure 5 and

Table 4 show another example, for which we assigned 0.5 to tile initial states of all

neurons, so that they started evolving from the fuzziest states. In this example, we

reached a feasible solution with cost 49 at the seventh iteration, but we could not reach

any other feasible solutions by further iterations. The oscillatory behavior of the

energy function arises from using a discrete model with self-feedback. The solution

with cost 49 is fairly good but not as good as in the previous example. Experiments

performed with different initial values and/or weight factors gave solutions most fre-

quently with costs around 50, and could not pick up the best solution. In worst cases,

no feasible solution could be reached. These results are indicative of the limitations of

the problem-solving capability of the binary number representation scheme. As we

now show, much better results can be obtained with a degenerate number representa-

tion scheme.

- ,. , n u nnnIn nn n m n u nnl a In l m l
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To examine the problem-solving capability of the degenerate number representa-

tion schemes, we programmed the same problem on a 140-neuron network using the

simple-sum scheme (N = qrnn = 7x4x5 = 140, M=7, K=I). Figures 6 and 7 and

Tables 5 and 6 show the computational performance of the 140-neuron network with

its initial states all set equal to 0.5, the fuzziest states. Weight factors were chosen to

be A=29, B=80, C=80, and D=0.55. Through the first several iterations, the source and

demand constraints came to be almost satisfied (see Fig. 6 and Table 5), and at the

sixth iteration the first feasible solution, with cost 43, was reached (see Fig. 7 and

Table 6). The solution was improved further by continuing iterations, passing another

feasible solution with cost 40 at the tenth iteration, the best solution with cost 38 was

finally reached on the twenty-first iteration. To show the role played by the degen-

eracy of the number representation, the complete states of the 140 neurons are depicted

in Fig. 8 for the iterations from No. 21 through No. 28. Each neuron is represented by

a star when it is firing (Vxyj= 1) and by a dot when not firing (Vxyi = 0). The

number of neurons that are firing in each set of seven neurons represents the content of

the flow matrix element fxy at the corresponding position. At iteration No. 21, for

example, we had.f 25=1 because only one neuron V25,3 was firing (V1 5,3=1) and the rest

of the six neurons were not firing. At iteration No. 22, neuron V253 stopped firing, but

the correct solution f25=1 was retained because the next neighbor neuron 252 started

firing, instead of 125,3. We can observe a similar phenomenon in other sets of neurons

representing f35 and f45 at iterations No. 21, 22, 23, 25, 26, and 27. In this manner,

the neural network can give correct solutions at many different points in its state

space, and these points cluster in a particular region of the state space that corresponds

to low energy function values. It is because of this characteristic that the degenerate

number representation scheme can have better problem-solving capabilities than the
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pure binary number representation scheme.

Figure 9 and Table 7 show another example of the computational performance of

the 140-neuron network, where uniform random numbers between 0 and I were

assigned to the initial state variables of the neurons. In this example, we obtained two

different solutions with cost 38, showing that the best solution is not unique.

V. Simultaneous Equations

In this section we show how we can program and solve on a neural network

simultaneous equations

ltx = y (30)

where II is a full-rank square matrix with NxN elements, and x and y are vectors with

N elements representing, respectively, unknown and given variables. (Note that decon-

volution is a special case of this general problem.)

A. Energy Function

In order to use the spontaneous energy-minimization process of the neural net-

work, we reformulate the problem in the form of a minimization problem by introduc-

ing an energy function that includes a term

IlY - 11x112, (31)

so that the norm of the difference can be minimized through the energy minimization

process. For our later demonstration of the Fourier transformation, we allow y and II

to take on complex values, but, for the sake of simplicity, we restrict x to only positive

integer values, although we could include complex numbers by using additional neu-

rons labeled by a more complicated set of subscripts. As in Eq. (21), we express the

nth element x, of the unknown vector x by the group-and-weight scheme:
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K [ A ! ]

x, -(32)

By substituting Eq. (32) into Eq. (31), we have an energy function

N K kf 2

E =-(A 2)_ V E1 (.%f+l)k - 1 I-2V.(k_)A+, (33)
,,-l k=1 =

-A(B 2)y_ Y,- 11' -2

N N N K K Al M
+ )y Z

I=-1 I: .'=1I := I k'=l I - I '=1I

N N K Af- BX Y' E X(' tl)k-eb,h/,'llV(k- 1f+i

N+ (B/2)Y!yjj-,
+1

where, as in Eq. (22), the first term is for binarization, yt and hln are elements of y and

II, and * and Re[ I denote complex conjugate and real part, respectively.

B. lInterconnection Matrix

The energy function is now modified to

N K Af N K MfE = -(1/2)y E k-Y Yf, Yk'.-1)l.- (34)

, I k=1 i=1 n'=I k'=l i'=l
N K Mf

nI kl 5=1

By equating the corresponding coefficients of Eq. (33) and (34), we determine the

interconnection strengths and the biases:

N

TR,(k_.I )M+in.(kI )M+i,  4A(,!+l )'- ,,,a8 - B(MIj .)k+ ,,2Y1 1 / ', (35)
1=1

it.(k-1)M+i = -2A(M+I) '- I + B(M+I )k-' lR e 1hn'*y]. (36)

Equation (31) includes the discrete Fourier transform as a special case with

hl. = exp[-2nj(l- I )(n- 1 )/NJ, (37)

and the inverse transform is computed by solving the simultaneous linear equations.
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In this case, Eq. (35) takes a simple form due to the orthogonality of the Fourier

transform matrix:

Tn,(k-l)Mfi.n, (k'l)A i, = 4A(M+l )k-1,8,' iik' (38)

-BN(M+ I )k+k'-25 r ,.

C. Numerical Experiments

Computations of the inverse Fourier transform were programmed on the neural

network and the performance was simulated on a digital computer. We used signals

with N=15 sample points. Each sample-point x, was expressed by 24 neurons based

on the simple-sum scheme (M=24, K=I), so that 360 neurons were employed in total.

We adopted the differential asynchronous transition mode, and chose weight factors as

A=28 and B=I. In Fig. 10, (a) and (b) show, respectively, an original signal x and its

Fourier transform y (only absolute values are shown in the figure). The task given to

the neural network is to compute x from a given y.

Assuming no a priori knowledge, we started from the fuzziest initial states

1, = 0.5 shown in Fig. 10 (c) and got the result shown in Fig. 10 (d) after only two

iterations. Another example is shown in Fig. 11, where we used an asymmetric signal

and started from random initial states. Again after only two iterations we obtained the

result shown in Fig. 11 (d). Although the solutions obtained are not exact, the speed

of computation is impressive. In fact, this apparently enormous speed of computation

is quite misleading, for reasons that will be revealed later in Ohe following section.

VI. Computational and Programming Complexities

As has been demonstrated in Sections IV, and V, the computational speed of a

neural network is very high, solutions (though not always exact) being obtained within

several clock times (iterations). At present, we do not know how the computation time
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(the number of iterations required) is related to the problem size (the number of neu-

rons employed) and to the algorithm (the choice of the interconnections). We conjec-

ture that the computation time does not grow too rapidly with problem size, because

the greater the problem size, the more neurons participate in solving the problem, and

the higher the parallelism used. If dis conjecture is correct, the computation time is

very short for a properly programmed (interconnected) neural network, irrespective of

the problem size. It may appear, then, that neural networks would be the computation

architecture of choice in most problems that can be included within the energy minimi-

zation framework. However, this conclusion is not correct. Although the computation

time itself may be very short, it may be necessary to invest very significant computa-

tion time simply to program the network, i.e. to determine the proper interconnection

strengths and neural biases. The situation is somewhat analogous to the classical ana-

lo- electronic computer for which a large amount of time must be spent wiring the

proper modules together before any problem can be solved. Once the modules are

connected, a solution appears almost immediately.

A. Progranmming Complexity

By analogy with the concept of computational complexity in digital com-

puting, we introduce the concept of programming complexity in neural computing. We

define programming complexity as the number of arithmetic operations that must be

performed to determine the proper interconnection strengths and neural biases for the

problem to be solved. Conventional digital computers also need programming, but

once the program is compiled and stored in memory, it can be used on many different

sets of input data. For this reason, the concept of programming complexity has little

significance in the world of conventional digital computers, where programs are com-

pletely separable from data. In neural network computers, a program and data are
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generally mixed together and stored in the interconnection strengths and/or neural

biases. For example, in Eq. (24), the first three terms represent part of the program

(since they do not depend on data), and the last term, including the costs Cxy,

corresponds to the data. Therefore, we must redetermine the interconnection strengths

and/or the biases each time we use new data. In such an environment, the program-

ming complexity becomes an important measure of the efficiency of neural computing.

We know that it is not meaningful to compare the efficiencies of conventional digital

computers and neural computers on the basis of computational complexity and pro-

gramming complexity, because they mean different things. Digital computers always

give exact solutions (within the machine precision) after performing the number of

operations specified by the computational complexity, whereas neural computers do not

guarantee exact solutions even if they are programmed by performing the number of

operations specified by the programming complexity. Nevertheless, a comparison of

the computational complexity and the programming complexity does reveal certain

interesting aspects of neural computing, as discussed in the following section.
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11. Simultaneous Equations

To solve simultaneous equations with N unknown variables, we employed qN

neurons, with q being the number of neurons used to represent each unknown variable.

We consider q to be a constant factor, since it does not depend on N. The number of

interconnections is given by (l12)qN(q;N+I)zO(N2), and the number of biases is

qNzO(,\. We need O(N) operations to determine each interconnection strength (see

Eq. (35)), and each bias (see Eq. (36)), so that the programming complexity is 0(N3).

The computational complexity of this problem is also O(N3). 14 . This means that solu-

tions of such a problem on either a neural computer or a conventional digital computer

would require essentially the same computational load. In the case of the neural com-

puter, the computations must be expended to determine the interconnection stengths

and biases, while in the case of the conventional digital computer the computations are

expended on solving the problem itself.

This comparison is even more striking in the case of the Fourier transformation

discussed earlier. Since Eq. (38) contains no data terms, we need not recompute the

interconnection strengths for each different set of data. The programming complexity

N
comes only from computation of the term Xjhh*l in the biases, Eq. (36). Noting Eq.

1=1

(37), we find that to determine the proper biases, we must in fact compute the very

same inverse Fourier transform that the neural network was to find! Thus we have

already arrived at the solution by the time we finish programming, and it is now no

surprise the neural network supplies the answer in only two interations. The answer is

in fact pre-programmed into the machine!

, ,a



C. The Traveling-Salesman Problem

In the previous section we saw an example in which the programming complexity

of a neural computer and the computational complexity on a conventional computer

are of the same order. The question naturally arises as to whether this is the case with

all problems. If so, neural computing loses most of its attractiveness. lopfield and

Tank's paper 13 on the traveling salesman problem provides the best example with

which to answer this question. The computational complexity of the traveling sales-

man problem is an exponential function, O(N!), of the number of cities N. IIopfield

and Tank showed that the problem can be programmed on a neural network with N2

neurons that represent the elements of a permutation matrix. We can show that the

programming complexity of this scheme is O(N3). This large difference of complexi-

ties makes neural computing very attractive, even though it does not guarantee the best

solution.

C. The Hitchcock Problem

Computational complexity in conventional digital computing depends greatly on

the algorithms used, so that a great effort has been made by computer scientists to

seek better algorithms and thereby reduce computational complexity. The same can be

true with programming complexity in neural computing. The itchcock problem pro-

vides a good example for demonstrating good and poor algorithms (ways of intercon-

nection) in terms of programming complexity. In Section IV, the 1itchcock problem

with rn sources and n demands was solved by using qrnn::O(nz) neurons. Since Eqs.

(24) and (25) include data Cxy, Sx , and Dy, we have to redetermine

(112)qmn(l+qmn)=O(n2n 2) interconnection strengths and qnzn=O(zn) biases for each

new set of data. Each interconnection strength and bias can be determined by a con-

stant number of operations, so that the programming complexity is given by
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0(m 2n2) = 0(n 4 ) for m--n. In Section IV B, we suggested an alternative definition of

the energy function that does not square the total cost in the last term of Eq. (22). If

we use this new energy function, the interconnection strengths and biases become

, I+i = 4A (M+ 1 )k- ',XX,''Y', J'U (39)
- B(M+l1)L '-6xx, -C(+1)k-z,.,

Ixy,(k-1)f+i = -2A(,+I)k-1 + B(AM+I)k-SX + C(f+l)k-'Dy (40)

- (1/2)D(M+1)k-1CxY.

Now the interconnection strengths do not depend on the data , and they need not

be re-determined for each new set of data, so that the programming complexity comes

only from the biases, Eq. (40), and is given by O(rnn)zO(n 2 ) for mzn. This is a very

significant improvement. The computational complexity of the Hitchcock problem

depends on the algorithm used by a conventional digital computer. If we search for

the best solution randomly among all the possible combinations of the neural states, it

becomes 2qP=O(2""). Even if we restrict the search to feasible solutions, it can still

be exponential O(nm-Iln-1) 18. Of course, these algorithms are worst extremes, and

there exist several good algorithms that are in practical use. We do not know exactly

what is the computational complexity of the best existing algorithm for the Hitchcock

problem, but we estimate it to be a low-order polynomial. If it is still higher than

O(mn), then neural computing can have an advantage for this problem.

VII. Conclusion

Following the lead of Hopfield and Tank, we proposed an architecture for pro-

gramming highly parallel computation on neural networks. In Section III, we described

number representation schemes based on linear mapping of the number space onto the

neuron space, and pointed out the advantage of the degenerate number representation

/na
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schemes. In Sections IV,and V, the validity of the architecture was demonstrated by

solving the Hitchcock problem and simultaneous linear equations on neural networks.

The dynamics of the neural network were simulated on a digital computer. In Section

VI, we introduced the new concept of programming complexity in neural computing,

which was used to evaluate the computational efficiency of algorithms performed on

neural networks. We compared the programming complexity with the "worst case"

computational complexity, simply because the "average" complexity was too hard to

estimate. However, we note that programming complexity is better compared with

"average" computational complexity, because they have a common characteristic that

the solution is not always best or exact, even if we perform the number of operations

specified by these complexities.

Finally we point out that there exists a fundamental limitation to the class of

problems that can be programmed and solved on the -Iopfield neural network. This

limitation comes from the requirement that the energy function must be a quadratic

function of the neuron state variables. All linear problems, such as discussed in this

paper, can satisfy this requirement. However, general nonlinear problems cannot

satisfy this requirement. Floating-point number representation is one such nonlinear

problen.
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Figure Captions

1. Neural network model.

2. The 1litchcock Problem, with 4 sources and 5 demands.

3. Neural dynamics for the Hitchcock problem, using a binary number representation

scheme. The initial states are randomly generated from a seed, and the transition

mode is direct asynchronous. The final transportation matrix gives a network

flow cost of 40. The constants in the energy function are chosen as A=27,

B-C=80, and D=0.2. The constant x0 is 0.5. See Table 3 for the flow matrices at

the iteration numbers indicated by the arrows.

4. Flow cost histogram for the Hitchcock problem. The number of samples is 50000.

5. Second example of the Hitchcock problem using a binary number representation

scheme. Uniformly fuzzy states initialized the network, and a "softer" non-linear

function was used to give the best solution, with a flow cost of 49. Tile weights

used were A=27, B=C=80, D=0.2. The constant x0 was 1.0. The open circle

represents a solution that satisfied the constraints. See Table 4 for flow matrices

at the iteration numbers indicated by the arrows.

6. Network dynamics of the Hitchcock problem using a degenerate (simple sum)

number representation scheme. The constants used were A=29, B=C=80, D=0.55,

and x0=0.l. Open circles again represent solutions that satisfy the constraints.

Flow matrices corresponding to the arrows are found in Table 5.

7. Continuation of the degenerate network. One of the two-in-50.000 best solutions

is found at time 21. Open circles represent solutions that satisfy the constraints

(i.e. "consistent" solutions). The cost associated with the solution at the sixth

ff
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iteration is 43, that associated with the group of consistent solutions starting at

iteration 10 is 40, and that associated with the remaining consistent solutions is

38. See Table 6 for the corresponding flow matrices.

8. Neural state transitions of the degenerate (simple sum) Hitchcock network (Figs.

6 and 7). Iterations 21 through 28 are shown.

9. Secend example of the degenerate (simple sum) Hitchcock network. A random

initial state drove this network to find both of the best solutions. The two flow

matrices are shown in Table 7.

10. Inverse DFT. The transition mode is differential asynchronous. (a) Unknown

signal. (b) Known Fourier transform. (c) Uniformly fuzzy initial states. (d)

Estimated signal after 2 interations.

11. Inverse DFT, second example. (a) Unknown asymmetric signal. (b) Known

Fourier transform. (c) Random initial states. (d) Estimated signal after 2 iterations.

Table Captions

1. (a) Cost matrix for the Hitchcock problem. (b) Sample solution depicting the flow

from source X to demand Y.

2. Neural representation of the flow matrix for the Hitchcock network flow problem.

q neurons are used to represent one element of the flow matrix.

3. Flow matrices for the specified numbers of iterations,corresponding to the points

indicated on Fig. 3.

4. Flow matrices for the specified numbers of iterations, corresponding to points

indicated on Fig. 5.

5. Flow matrices for the specified numbers of iterations, corresponding to the points
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indicated on Fig. 6.

6. Flow matrices for the specified numbers of iterations, Corresponding to the points

indicated in Fig. 7.

7. Flow matrices for the specified numbers of iterations, corresponding to the points

indicated on Fig. 9.
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Figure Captions

1. Neural network model.

2. The I-itchcock Problem, with 4 sources and 5 demands.

3. Neural dynamics for the Hitchcock problem, using a binary number representation

scheme. The initial states are randomly generated from a seed, and the transition

mode is direct asynchronous. The final transportation matrix gives a network

flow cost of 40. The constants in the energy function are chosen as A=27,

B=C=80, and D=0.2. The constant x0 is 0.5. See Table 3 for the flow matrices at

the iteration numbers indicated by the arrows.

4. Flow cost histogram for the Hitchcock problem. The number of samples is 5000.

5. Second example of the Hitchcock problem using a binary number representation

scheme. Uniformly fuzzy states initialized the network, and a "softer" non-linear

function was used to give the best solution, with a flow cost of 49. The weights

used were A=27, B=C=80, D=0.2. The constant x0 was 1.0. The open circle

represents a solution that satisfied the constraints. See Table 4 for flow matrices

at the iteration numbers indicated by the arrows.

6. Network dynamics of the Hitchcock problem using a degenerate (simple sum)

number representation scheme. The constants used were A=29, B=C=80, D=0.55,

and x0=0.1. Open circles again represent solutions that satisfy the constraints.

Flow matrices corresponding to the arrows are found in Table 5.

7. Continuation of the degenerate network. One of the two-in-50,000 best solutions

is found at time 21. Open circles represent solutions that satisfy the constraints

(i.e. "consistent" solutions). The cost associated with the solution at the sixth
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iteration is 43, that associated with the group of consistent solutions starting at

iteration 10 is 40, and that associated with the remaining consistent solutions is

38. See Table 6 for the corresponding flow matrices.

8. Neural state transitions of the degenerate (simple sum) I-Iitchcock network (Figs.

6 and 7). Iterations 21 through 28 are shown.

9. Second example of the degenerate (simple sum) Ilitchcock network. A random

initial state drove this network to find both of the best solutions. The two flow

matrices are shown in Table 7.

10. Inverse DFT. The transition mode is differential asynchronous. (a) Unknown

signal. (b) Known Fourier transform. (c) Uniformly fuzzy initial states. (d)

Estimated signal after 2 interations.

11. Inverse DFT, second example. (a) Unknown asymmetric signal. (b) Known

Fourier transform. (c) Random initial states. (d) Estimated signal after 2 iterations.

Table Captions

1. (a) Cost matrix for the Hitchcock problem. (b) Sample solution depicting the flow

from source X to demand Y.

2. Neural representation of the flow matrix for the Hitchcock network flow problem.

q neurons are used to represent one element of the flow matrix.

3. Flow matrces for the specified numbers of iterations,corresponding to the points

indicated on Fig. 3.

4. Flow matrices for the specified numbers of iterations, corresponding to points

indicated on Fig. 5.

5. Flow matrices for the specified numbers of iterations, corresponding to the points
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Y=1I Y=2 Y=3 Y=4 Y=5
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Flow Matri, fxly

DI D2 D3 D4 DS

2 7 3 2 4
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S2 3 2 1 0 0 0
3 4 0 0 0 2 2

S4 6 0 1 3 0 2
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DI D2 D3 D4 D5
No.0 2.0 7.0 3.0 2.0 4.0
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S2 3.0 1.2 3.4 1.4 5.3 2.4
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S4 6.0 5.5 1.6 5.9 3.0 1.3

(a)

DI D2 D3 D4 D5
No. 1 2.0 7.0 3.0 2.0 4.0

SI 5.0 0 0 0 0 0
S2 3.0 0 0 0 0 0
S3 0 0 0 0 0 5.0
S4 6.0 0 1.0 3.0 0 2.0

(b)

DI D2 D3 D4 D5
No. 2 2.0 7.0 3.0 2.0 4.0

SI 5.0 3.0 7.0 0 0 0
S2 3.0 1.0 1.0 1.0 0 0
S3 4.0 0 0 0 0 4.0
S4 6.0 1.0 1.0 3.0 2.0 0

(c)

DI D2 D3 D4 D5
No. 2.0 7.0 3.0 2.0 4.0

SI 5.0 1.0 5.0 0 0 0
S2 3.0 1.0 1.0 0 0 0
S3 4.0 0 0 0 0 4.0
S4 6.0 0 1.0 3.0 2.0 0

(d)

D1 D2 D3 D4 D5
No. 6 2.0 7.0 3.0 2.0 4.0

Sl 5.0 0 5.0 0 0 0
S2 3.0 2.0 1.0 0 0 0
S3 4.0 0 0 0 0 4.0
S4 6.0 0 1.0 3.0 2.0 0
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No. 0 D1 D2 D3 D4 D52.0 7.0 3.0 2.0 4.0

SI 5.0 3.5 3.5 3.5 3.5 3.5
S2 3.0 3.5 3.5 3.5 3.5 3.5
S3 4.0 3.5 3.5 3.5 3.5 3.5
S4 6.0 3.5 3.5 3.5 3.5 3.5

(a)

No. 7 D1 D2 D3 D4 D5

2.0 7.0 3.0 4.0 4.0

Si 5.0 0 5.0 0 0 0
S2 3.0 2.0 0 1.0 0 0
S3 4.0 0 1.0 1.0 2.0 0
S4 6.0 0 1.0 1.0 0 4.0

(b)
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No. 0 DI D2 D3 D4 D52.0 7.0 3.0 2.0 4.0

SI 5.0 3.5 3.5 3.5 3,5 3.5
S2 3.0 3.5 3.5 3.5 3.5 3.5
S3 4.0 3.5 3.5 3.5 3.5 3.5
S4 6.0 3.5 3.5 3.5 3.5 3.5

(a)

No.I DI D2 D3 D4 D5

2.0 7.0 3.0 4.0 4 0

SI 5.0 0 0 0 0 0
S2 3.0 0 0 0 0 0
S3 4.0 0 0 0 0 2.0
S4 6.0 0 1.0 0 2.0 2.0

(b)

No. 2 DI D2 D3 D4 D52.0 7.0 3.0 2.0 4.0

Si 5.0 3.0 4.0 0 0 0
52 3.0 1.0 2.0 1.0 0 0
S3 4.0 0 0 1.0 0 1.0
S4 6.0 0 1.0 1.0 1.0 2.0

(c)

No. 3 DI D2 D3 D4 D5

2.0 7.0 3.0 2.0 4.0

SI 5.0 0 4.0 0 1.0 0
S2 3.0 1.0 1.0 0 0 0
S3 4.0 1.0 1.0 0 0 1.0

S4 6.0 0 1.0 2.0 1.0 2.0

(d)



Dl D2 D3 D4 D5
No. 6 2.0 7.0 3.0 2.0 4.0

SI 5.0 0 4.0 0 1.0 0
S2 3.0 2.0 1.0 0 0 0
S3 4.0 0 1.0 0 1.0 2.0
S4 6.0 0 1.0 3.0 0 2.0

(a)

DI D2 D3 D4 D5
No. 10 2.0 7.0 3.0 2.0 4.0

SI 5.0 0 4.0 0 0 1.0
S2 3.0 2.0 1.0 0 0 0
S3 4.0 0 1.0 0 1.0 2.0
S4 6.0 0 1.0 3.0 0 2.0

(b)

DI D2 D3 D4 D5
No. 1 2.0 7.0 3.0 2.0 4.0

SI 5.0 0 4.0 0 0 1.0
S2 3.0 2.0 0 0 0 1.0
S3 4.0 0 0 0 3.0 0
S4 6.0 0 2.0 3.0 0 1.0

(c)

No.21 DI D2 D3 D4 D5
2.0 7.0 3.0 2.0 4.0

SI 5.0 0 5.0 0 0 0
S2 3.0 2.0 0 0 0 1.0
S3 4.0 0 0 0 2.0 2.0
S4 6.0 0 2.0 3.0 0 1.0
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